The document discusses several approaches for text classification using machine learning algorithms:
1. Count the frequency of individual words in tweets and sum for each tweet to create feature vectors for classification models like regression. However, this loses some word context information.
2. Use Bayes' rule and calculate word probabilities conditioned on class to perform naive Bayes classification. Laplacian smoothing is used to handle zero probabilities.
3. Incorporate word n-grams and context by calculating word probabilities within n-gram contexts rather than independently. This captures more linguistic information than the first two approaches.