The document discusses decision trees, which are a type of predictive modeling that can be used for segmentation. It provides examples of how to segment a population of customers into subgroups based on attributes like employment status and income. The key aspects of decision trees covered include how they are constructed from a root node down to leaf nodes, different algorithms for building decision trees, measures for determining the best attributes to split on like information gain, and techniques for validating and pruning trees to avoid overfitting.