The document discusses hypergeometric probability distribution. It provides examples of hypergeometric experiments involving selecting items from a population without replacement, where the probability of success changes with each trial. The key points are:
- A hypergeometric experiment has a fixed population with a specified number of successes, samples items without replacement, and the probability of success changes on each trial.
- The hypergeometric distribution gives the probability of getting x successes in n draws from a population of N items with K successes.
- Examples demonstrate calculating hypergeometric probabilities and approximating it as a binomial when the population is large compared to the sample size.