Flink 
internals 
Kostas Tzoumas 
Flink committer & 
Co-founder, data Artisans 
ktzoumas@apache.org 
@kostas_tzoumas
Welcome 
§ Last talk: how to program PageRank in Flink, 
and Flink programming model 
§ This talk: how Flink works internally 
§ Again, a big bravo to the Flink community 
2
Recap: 
Using Flink 
3
DataSet and transformations 
Input X First Y Second 
Operator X Operator Y 
ExecutionEnvironment 
env 
= 
ExecutionEnvironment.getExecutionEnvironment(); 
DataSet<String> 
input 
= 
env.readTextFile(input); 
DataSet<String> 
first 
= 
input 
.filter 
(str 
-­‐> 
str.contains(“Apache 
Flink“)); 
DataSet<String> 
second 
= 
first 
.filter 
(str 
-­‐> 
str.length() 
> 
40); 
second.print() 
env.execute(); 
4
Available transformations 
§ map 
§ flatMap 
§ filter 
§ reduce 
§ reduceGroup 
§ join 
§ coGroup 
§ aggregate 
§ cross 
§ project 
§ distinct 
§ union 
§ iterate 
§ iterateDelta 
§ repartition 
§ … 
5
Other API elements & tools 
§ Accumulators and counters 
• Int, Long, Double counters 
• Histogram accumulator 
• Define your own 
§ Broadcast variables 
§ Plan visualization 
§ Local debugging/testing mode 
6
Data types and grouping 
public 
static 
class 
Access 
{ 
public 
int 
userId; 
public 
String 
url; 
... 
} 
public 
static 
class 
User 
{ 
public 
int 
userId; 
public 
int 
region; 
public 
Date 
customerSince; 
... 
} 
DataSet<Tuple2<Access,User>> 
campaign 
= 
access.join(users) 
.where(“userId“).equalTo(“userId“) 
DataSet<Tuple3<Integer,String,String> 
someLog; 
someLog.groupBy(0,1).reduceGroup(...); 
§ Bean-style Java classes & field names 
§ Tuples and position addressing 
§ Any data type with key selector function 
7
Other API elements 
§ Hadoop compatibility 
• Supports all Hadoop data types, input/output 
formats, Hadoop mappers and reducers 
§ Data streaming API 
• DataStream instead of DataSet 
• Similar set of operators 
• Currently in alpha but moving very fast 
§ Scala and Java APIs (mirrored) 
§ Graph API (Spargel) 
8
Intro to 
internals 
9
for 
(String 
token 
: 
value.split("W")) 
{ 
out.collect(new 
Tuple2<>(token, 
1)); 
Task 
Manager 
DataSet<String> 
text 
= 
env.readTextFile(input); 
DataSet<Tuple2<String, 
Integer>> 
result 
= 
text 
Job 
Manager 
Task 
Manager 
.flatMap((str, 
out) 
-­‐> 
{ 
}) 
.groupBy(0) 
.aggregate(SUM, 
1); 
Flink Client & 
Optimizer 
O 
Romeo, 
Romeo, 
wherefore 
art 
thou 
Romeo? 
O, 
1 
Romeo, 
3 
wherefore, 
1 
art, 
1 
thou, 
1 
Apache Flink 
10 
Nor 
arm, 
nor 
face, 
nor 
any 
other 
part 
nor, 
3 
arm, 
1 
face, 
1, 
any, 
1, 
other, 
1 
part, 
1
If you want to know one 
thing about Flink is that 
you don’t need to know 
the internals of Flink. 
11
Philosophy 
§ Flink “hides” its internal workings from the 
user 
§ This is good 
• User does not worry about how jobs are 
executed 
• Internals can be changed without breaking 
changes 
§ … and bad 
• Execution model more complicated to explain 
compared to MapReduce or Spark RDD 
12
Recap: DataSet 
Input X First Y Second 
Operator X Operator Y 
13 
ExecutionEnvironment 
env 
= 
ExecutionEnvironment.getExecutionEnvironment(); 
DataSet<String> 
input 
= 
env.readTextFile(input); 
DataSet<String> 
first 
= 
input 
.filter 
(str 
-­‐> 
str.contains(“Apache 
Flink“)); 
DataSet<String> 
second 
= 
first 
.filter 
(str 
-­‐> 
str.length() 
> 
40); 
second.print() 
env.execute();
Common misconception 
Input X First Y Second 
§ Programs are not executed eagerly 
§ Instead, system compiles program to an 
execution plan and executes that plan 
14
DataSet<String> 
§ Think of it as a PCollection<String>, or a 
Spark RDD[String] 
§ With a major difference: it can be produced/ 
recovered in several ways 
• … like a Java collection 
• … like an RDD 
• … perhaps it is never fully materialized (because 
the program does not need it to) 
• … implicitly updated in an iteration 
§ And this is transparent to the user 
15
Example: grep 
Romeo, 
Romeo, 
where 
art 
thou 
Romeo? 
Load Log 
Search 
for str1 
Search 
for str2 
Search 
for str3 
Grep 1 
Grep 2 
Grep 3 
16
Staged (batch) execution 
Romeo, 
Romeo, 
where 
art 
thou 
Romeo? 
Load Log 
Load Log 
Search 
for str1 
Search 
for str2 
Search 
for str3 
Grep 1 
Grep 2 
Grep 3 
Stage 1: 
Create/cache Log 
Subseqent stages: 
Grep log for matches 
Caching in-memory 
and disk if needed 
Search 
for str1 
Search 
for str2 
Search 
for str2 
Grep 1 
Grep 2 
Grep 2 
Load Log 
Search 
for str1 
Search 
for str2 
Search 
for str2 
Grep 1 
Grep 2 
Grep 2 
17
Load Log 
Search 
for str1 
Search 
for str2 
Search 
for str2 
Grep 1 
Grep 2 
Grep 2 
Pipelined execution 
Romeo, 
Romeo, 
where 
art 
thou 
Romeo? 
Load Log 
Load Log 
Search 
for str1 
Search 
for str2 
Search 
for str3 
Grep 1 
Grep 2 
Grep 3 
000000111111000000111111 
Stage 1: 
Deploy and start operators 
Data transfer in-memory 
and disk if 
needed 
Search 
for str1 
Search 
for str2 
Search 
for str2 
Grep 1 
Grep 2 
Grep 2 
18 
Note: Log 
DataSet is 
never 
“created”!
Benefits of pipelining 
§ 25 node cluster 
§ Grep log for 3 
terms 
§ Scale data size 
from 100GB to 
1TB 
2500 
Time to complete grep (sec) Data size (GB) 
2250 
2000 
1750 
1500 
1250 
1000 
750 
500 
250 
0 
Pipelined with Flink 
0 100 200 300 400 500 600 700 800 900 1000 
Cluster memory 
exceeded 19
20
Drawbacks of pipelining 
§ Long pipelines may be active at the same time leading 
to memory fragmentation 
• FLINK-1101: Changes memory allocation from static to 
adaptive 
§ Fault-tolerance harder to get right 
• FLINK-986: Adds intermediate data sets (similar to RDDS) as 
first-class citizen to Flink Runtime. Will lead to fine-grained 
fault-tolerance among other features. 
21
Example: Iterative processing 
DataSet<Page> 
pages 
= 
... 
DataSet<Neighborhood> 
edges 
= 
... 
DataSet<Page> 
oldRanks 
= 
pages; 
DataSet<Page> 
newRanks; 
for 
(i 
= 
0; 
i 
< 
maxIterations; 
i++) 
{ 
newRanks 
= 
update(oldRanks, 
edges) 
oldRanks 
= 
newRanks 
} 
DataSet<Page> 
result 
= 
newRanks; 
DataSet<Page> 
update 
(DataSet<Page> 
ranks, 
DataSet<Neighborhood> 
adjacency) 
{ 
return 
oldRanks 
.join(adjacency) 
.where(“id“).equalTo(“id“) 
.with 
( 
(page, 
adj, 
out) 
-­‐> 
{ 
for 
(long 
n 
: 
adj.neighbors) 
out.collect(new 
Page(n, 
df 
* 
page.rank 
/ 
adj.neighbors.length)) 
}) 
.groupBy(“id“) 
.reduce 
( 
(a, 
b) 
-­‐> 
new 
Page(a.id, 
a.rank 
+ 
b.rank) 
); 
22
Iterate by unrolling 
Client 
Step Step Step Step Step 
§ for/while loop in client submits one job per 
iteration step 
§ Data reuse by caching in memory and/or disk 
23
Iterate natively 
Y initial 
solution 
DataSet<Page> 
pages 
= 
... 
DataSet<Neighborhood> 
edges 
= 
... 
IterativeDataSet<Page> 
pagesIter 
= 
pages.iterate(maxIterations); 
DataSet<Page> 
newRanks 
= 
update 
(pagesIter, 
edges); 
DataSet<Page> 
result 
= 
pagesIter.closeWith(newRanks) 
24 
partial 
solution 
partial 
X solution 
other 
datasets 
iteration 
result 
Replace 
Step function
Iterate natively with deltas 
Replace 
workset A B workset 
initial 
workset 
initial 
partial 
solution 
solution 
Y delta 
X set 
other 
datasets 
Merge deltas 
DeltaIteration<...> 
pagesIter 
= 
pages.iterateDelta(initialDeltas, 
iteration 
result 
maxIterations, 
0); 
DataSet<...> 
newRanks 
= 
update 
(pagesIter, 
edges); 
DataSet<...> 
newRanks 
= 
... 
DataSet<...> 
result 
= 
pagesIter.closeWith(newRanks, 
deltas) 
See http://data-artisans.com/data-analysis-with-flink.html 25
Native, unrolling, and delta 
26
Dissecting 
Flink 
27
28
The growing Flink stack 
29 
Python API 
(upcoming) Graph API Apache 
Common API 
Flink Optimizer Flink Stream Builder 
Scala API 
(batch) 
Java API 
(streaming) 
Java API 
(batch) 
MRQL 
Flink Local Runtime 
Embedded 
environment 
(Java collections) 
Local 
Environment 
(for debugging) 
Remote environment 
(Regular cluster execution) Apache Tez 
Single node execution Standalone or YARN cluster 
Data 
storage Files HDFS S3 JDBC Redis Rabbit 
Kafka MQ Azure 
tables …
Stack without Flink Streaming 
30 
30 
Python API 
(upcoming) Graph API Apache 
Focus on regular (batch) 
processing… 
Scala API Java API 
Common API 
Flink Optimizer 
MRQL 
Embedded Flink Local Runtime 
environment 
(Java collections) Local 
Environment 
(for debugging) 
Remote environment 
(Regular cluster execution) Apache Tez 
Standalone or YARN cluster 
Data 
storage Files HDFS S3 JDBC Azure 
tables … 
Single node execution
Program lifecycle 
30 
30 
Python API 
(upcoming) Graph API Apache 
Scala API Java API 
Common API 
Flink Optimizer 
MRQL 
Embedded Flink Local Runtime 
environment 
(Java collections) Local 
Environment 
(for debugging) 
Remote environment 
(Regular cluster execution) Apache Tez 
Standalone or YARN cluster 
Data 
storage Files HDFS S3 JDBC Azure 
tables … 
Single node execution 
31 
val 
source1 
= 
… 
val 
source2 
= 
… 
maxed 
= 
source1 
.map(v 
=> 
(v._1,v._2, 
val 
math.max(v._1,v._2)) 
val 
filtered 
= 
source2 
.filter(v 
=> 
(v._1 
> 
4)) 
val 
result 
= 
maxed 
.join(filtered).where(0).equalTo(0) 
.filter(_1 
> 
3) 
.groupBy(0) 
.reduceGroup 
{……} 
1 
3 
4 
5 
2
30 
30 
Python API 
(upcoming) Graph API Apache 
Scala API Java API 
Common API 
Flink Optimizer 
MRQL 
Embedded Flink Local Runtime 
environment 
(Java collections) Local 
Environment 
(for debugging) 
Remote environment 
(Regular cluster execution) Apache Tez 
Standalone or YARN cluster 
Data 
storage Files HDFS S3 JDBC Azure 
tables … 
Single node execution 
§ The optimizer is the 
component that selects 
an execution plan for a 
Common API program 
§ Think of an AI system 
manipulating your 
program for you J 
§ But don’t be scared – it 
works 
• Relational databases have 
been doing this for 
decades – Flink ports the 
technology to API-based 
systems 
Flink Optimizer 
32
A simple program 
33 
DataSet<Tuple5<Integer, 
String, 
String, 
String, 
Integer>> 
orders 
= 
… 
DataSet<Tuple2<Integer, 
Double>> 
lineitems 
= 
… 
DataSet<Tuple2<Integer, 
Integer>> 
filteredOrders 
= 
orders 
.filter(. 
. 
.) 
.project(0,4).types(Integer.class, 
Integer.class); 
DataSet<Tuple3<Integer, 
Integer, 
Double>> 
lineitemsOfOrders 
= 
filteredOrders 
.join(lineitems) 
.where(0).equalTo(0) 
.projectFirst(0,1).projectSecond(1) 
.types(Integer.class, 
Integer.class, 
Double.class); 
DataSet<Tuple3<Integer, 
Integer, 
Double>> 
priceSums 
= 
lineitemsOfOrders 
.groupBy(0,1).aggregate(Aggregations.SUM, 
2); 
priceSums.writeAsCsv(outputPath);
Two execution plans 
34 
GroupRed 
sort 
Combine 
Map DataSource 
Filter 
DataSource 
orders.tbl 
lineitem.tbl 
Join 
Hybrid Hash 
buildHT probe 
broadcast forward 
Map DataSource 
Filter 
DataSource 
orders.tbl 
lineitem.tbl 
Join 
Hybrid Hash 
buildHT probe 
hash-part [0] hash-part [0] 
hash-part [0,1] 
GroupRed 
sort 
Best plan forward 
depends on 
relative sizes 
of input files
Flink Local Runtime 
30 
30 
Python API 
(upcoming) Graph API Apache 
Scala API Java API 
Common API 
Flink Optimizer 
MRQL 
Embedded Flink Local Runtime 
environment 
(Java collections) Local 
Environment 
(for debugging) 
Remote environment 
(Regular cluster execution) Apache Tez 
Standalone or YARN cluster 
Data 
storage Files HDFS S3 JDBC Azure 
tables … 
Single node execution 
§ Local runtime, not 
the distributed 
execution engine 
§ Aka: what happens 
inside every 
parallel task 
35
Flink runtime operators 
§ Sorting and hashing data 
• Necessary for grouping, aggregation, 
reduce, join, cogroup, delta iterations 
§ Flink contains tailored implementations 
of hybrid hashing and external sorting in 
Java 
• Scale well with both abundant and restricted 
memory sizes 
36
Internal data representation 
37 
JVM Heap 
map 
JVM Heap 
reduce 
O 
Romeo, 
Romeo, 
wherefore 
art 
thou 
Romeo? 
00110011 
art, 
1 
O, 
1 
Romeo, 
1 
Romeo, 
1 
00110011 
00010111 
01110001 
01111010 
00010111 
00110011 
Network transfer 
Local sort 
How is intermediate data internally represented?
Internal data representation 
§ Two options: Java objects or raw bytes 
§ Java objects 
• Easier to program 
• Can suffer from GC overhead 
• Hard to de-stage data to disk, may suffer from “out 
of memory exceptions” 
§ Raw bytes 
• Harder to program (customer serialization stack, 
more involved runtime operators) 
• Solves most of memory and GC problems 
• Overhead from object (de)serialization 
§ Flink follows the raw byte approach 
38
Memory in Flink 
public 
class 
WC 
{ 
public 
String 
word; 
public 
int 
count; 
} 
empty 
page 
Pool of Memory Pages 
JVM Heap 
User code 
objects 
Sorting, 
hashing, 
caching 
Shuffling, 
broadcasts 
Unmanaged 
heap 
Managed 
heap 
Network 
buffers 
39
Memory in Flink (2) 
§ Internal memory management 
• Flink initially allocates 70% of the free heap as byte[] 
segments 
• Internal operators allocate() and release() these 
segments 
§ Flink has its own serialization stack 
• All accepted data types serialized to data segments 
§ Easy to reason about memory, (almost) no 
OutOfMemory errors, reduces the pressure to 
the GC (smooth performance) 
40
Operating on serialized data 
Microbenchmark 
§ Sorting 1GB worth of (long, double) tuples 
§ 67,108,864 elements 
§ Simple quicksort 
41
Flink distributed execution 
30 
30 
Python API 
(upcoming) Graph API Apache 
Scala API Java API 
Common API 
Flink Optimizer 
MRQL 
Embedded Flink Local Runtime 
environment 
(Java collections) Local 
Environment 
(for debugging) 
Remote environment 
(Regular cluster execution) Apache Tez 
Standalone or YARN cluster 
Data 
storage Files HDFS S3 JDBC Azure 
tables … 
Single node execution 
42 
§ Pipelined 
• Same engine for 
Flink and Flink 
streaming 
§ Pluggable 
• Local runtime can be 
executed on other 
engines 
• E.g., Java collections 
and Apache Tez
Closing 
43
Summary 
§ Flink decouples API from execution 
• Same program can be executed in many different 
ways 
• Hopefully users do not need to care about this and 
still get very good performance 
§ Unique Flink internal features 
• Pipelined execution, native iterations, optimizer, 
serialized data manipulation, good disk destaging 
§ Very good performance 
• Known issues currently worked on actively 
44
Stay informed 
§ flink.incubator.apache.org 
• Subscribe to the mailing lists! 
• http://flink.incubator.apache.org/community.html#mailing-lists 
§ Blogs 
• flink.incubator.apache.org/blog 
• data-artisans.com/blog 
§ Twitter 
• follow @ApacheFlink 
45
46
That’s it, time for beer 
47

Apache Flink internals

  • 1.
    Flink internals KostasTzoumas Flink committer & Co-founder, data Artisans ktzoumas@apache.org @kostas_tzoumas
  • 2.
    Welcome § Lasttalk: how to program PageRank in Flink, and Flink programming model § This talk: how Flink works internally § Again, a big bravo to the Flink community 2
  • 3.
  • 4.
    DataSet and transformations Input X First Y Second Operator X Operator Y ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); DataSet<String> input = env.readTextFile(input); DataSet<String> first = input .filter (str -­‐> str.contains(“Apache Flink“)); DataSet<String> second = first .filter (str -­‐> str.length() > 40); second.print() env.execute(); 4
  • 5.
    Available transformations §map § flatMap § filter § reduce § reduceGroup § join § coGroup § aggregate § cross § project § distinct § union § iterate § iterateDelta § repartition § … 5
  • 6.
    Other API elements& tools § Accumulators and counters • Int, Long, Double counters • Histogram accumulator • Define your own § Broadcast variables § Plan visualization § Local debugging/testing mode 6
  • 7.
    Data types andgrouping public static class Access { public int userId; public String url; ... } public static class User { public int userId; public int region; public Date customerSince; ... } DataSet<Tuple2<Access,User>> campaign = access.join(users) .where(“userId“).equalTo(“userId“) DataSet<Tuple3<Integer,String,String> someLog; someLog.groupBy(0,1).reduceGroup(...); § Bean-style Java classes & field names § Tuples and position addressing § Any data type with key selector function 7
  • 8.
    Other API elements § Hadoop compatibility • Supports all Hadoop data types, input/output formats, Hadoop mappers and reducers § Data streaming API • DataStream instead of DataSet • Similar set of operators • Currently in alpha but moving very fast § Scala and Java APIs (mirrored) § Graph API (Spargel) 8
  • 9.
  • 10.
    for (String token : value.split("W")) { out.collect(new Tuple2<>(token, 1)); Task Manager DataSet<String> text = env.readTextFile(input); DataSet<Tuple2<String, Integer>> result = text Job Manager Task Manager .flatMap((str, out) -­‐> { }) .groupBy(0) .aggregate(SUM, 1); Flink Client & Optimizer O Romeo, Romeo, wherefore art thou Romeo? O, 1 Romeo, 3 wherefore, 1 art, 1 thou, 1 Apache Flink 10 Nor arm, nor face, nor any other part nor, 3 arm, 1 face, 1, any, 1, other, 1 part, 1
  • 11.
    If you wantto know one thing about Flink is that you don’t need to know the internals of Flink. 11
  • 12.
    Philosophy § Flink“hides” its internal workings from the user § This is good • User does not worry about how jobs are executed • Internals can be changed without breaking changes § … and bad • Execution model more complicated to explain compared to MapReduce or Spark RDD 12
  • 13.
    Recap: DataSet InputX First Y Second Operator X Operator Y 13 ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); DataSet<String> input = env.readTextFile(input); DataSet<String> first = input .filter (str -­‐> str.contains(“Apache Flink“)); DataSet<String> second = first .filter (str -­‐> str.length() > 40); second.print() env.execute();
  • 14.
    Common misconception InputX First Y Second § Programs are not executed eagerly § Instead, system compiles program to an execution plan and executes that plan 14
  • 15.
    DataSet<String> § Thinkof it as a PCollection<String>, or a Spark RDD[String] § With a major difference: it can be produced/ recovered in several ways • … like a Java collection • … like an RDD • … perhaps it is never fully materialized (because the program does not need it to) • … implicitly updated in an iteration § And this is transparent to the user 15
  • 16.
    Example: grep Romeo, Romeo, where art thou Romeo? Load Log Search for str1 Search for str2 Search for str3 Grep 1 Grep 2 Grep 3 16
  • 17.
    Staged (batch) execution Romeo, Romeo, where art thou Romeo? Load Log Load Log Search for str1 Search for str2 Search for str3 Grep 1 Grep 2 Grep 3 Stage 1: Create/cache Log Subseqent stages: Grep log for matches Caching in-memory and disk if needed Search for str1 Search for str2 Search for str2 Grep 1 Grep 2 Grep 2 Load Log Search for str1 Search for str2 Search for str2 Grep 1 Grep 2 Grep 2 17
  • 18.
    Load Log Search for str1 Search for str2 Search for str2 Grep 1 Grep 2 Grep 2 Pipelined execution Romeo, Romeo, where art thou Romeo? Load Log Load Log Search for str1 Search for str2 Search for str3 Grep 1 Grep 2 Grep 3 000000111111000000111111 Stage 1: Deploy and start operators Data transfer in-memory and disk if needed Search for str1 Search for str2 Search for str2 Grep 1 Grep 2 Grep 2 18 Note: Log DataSet is never “created”!
  • 19.
    Benefits of pipelining § 25 node cluster § Grep log for 3 terms § Scale data size from 100GB to 1TB 2500 Time to complete grep (sec) Data size (GB) 2250 2000 1750 1500 1250 1000 750 500 250 0 Pipelined with Flink 0 100 200 300 400 500 600 700 800 900 1000 Cluster memory exceeded 19
  • 20.
  • 21.
    Drawbacks of pipelining § Long pipelines may be active at the same time leading to memory fragmentation • FLINK-1101: Changes memory allocation from static to adaptive § Fault-tolerance harder to get right • FLINK-986: Adds intermediate data sets (similar to RDDS) as first-class citizen to Flink Runtime. Will lead to fine-grained fault-tolerance among other features. 21
  • 22.
    Example: Iterative processing DataSet<Page> pages = ... DataSet<Neighborhood> edges = ... DataSet<Page> oldRanks = pages; DataSet<Page> newRanks; for (i = 0; i < maxIterations; i++) { newRanks = update(oldRanks, edges) oldRanks = newRanks } DataSet<Page> result = newRanks; DataSet<Page> update (DataSet<Page> ranks, DataSet<Neighborhood> adjacency) { return oldRanks .join(adjacency) .where(“id“).equalTo(“id“) .with ( (page, adj, out) -­‐> { for (long n : adj.neighbors) out.collect(new Page(n, df * page.rank / adj.neighbors.length)) }) .groupBy(“id“) .reduce ( (a, b) -­‐> new Page(a.id, a.rank + b.rank) ); 22
  • 23.
    Iterate by unrolling Client Step Step Step Step Step § for/while loop in client submits one job per iteration step § Data reuse by caching in memory and/or disk 23
  • 24.
    Iterate natively Yinitial solution DataSet<Page> pages = ... DataSet<Neighborhood> edges = ... IterativeDataSet<Page> pagesIter = pages.iterate(maxIterations); DataSet<Page> newRanks = update (pagesIter, edges); DataSet<Page> result = pagesIter.closeWith(newRanks) 24 partial solution partial X solution other datasets iteration result Replace Step function
  • 25.
    Iterate natively withdeltas Replace workset A B workset initial workset initial partial solution solution Y delta X set other datasets Merge deltas DeltaIteration<...> pagesIter = pages.iterateDelta(initialDeltas, iteration result maxIterations, 0); DataSet<...> newRanks = update (pagesIter, edges); DataSet<...> newRanks = ... DataSet<...> result = pagesIter.closeWith(newRanks, deltas) See http://data-artisans.com/data-analysis-with-flink.html 25
  • 26.
  • 27.
  • 28.
  • 29.
    The growing Flinkstack 29 Python API (upcoming) Graph API Apache Common API Flink Optimizer Flink Stream Builder Scala API (batch) Java API (streaming) Java API (batch) MRQL Flink Local Runtime Embedded environment (Java collections) Local Environment (for debugging) Remote environment (Regular cluster execution) Apache Tez Single node execution Standalone or YARN cluster Data storage Files HDFS S3 JDBC Redis Rabbit Kafka MQ Azure tables …
  • 30.
    Stack without FlinkStreaming 30 30 Python API (upcoming) Graph API Apache Focus on regular (batch) processing… Scala API Java API Common API Flink Optimizer MRQL Embedded Flink Local Runtime environment (Java collections) Local Environment (for debugging) Remote environment (Regular cluster execution) Apache Tez Standalone or YARN cluster Data storage Files HDFS S3 JDBC Azure tables … Single node execution
  • 31.
    Program lifecycle 30 30 Python API (upcoming) Graph API Apache Scala API Java API Common API Flink Optimizer MRQL Embedded Flink Local Runtime environment (Java collections) Local Environment (for debugging) Remote environment (Regular cluster execution) Apache Tez Standalone or YARN cluster Data storage Files HDFS S3 JDBC Azure tables … Single node execution 31 val source1 = … val source2 = … maxed = source1 .map(v => (v._1,v._2, val math.max(v._1,v._2)) val filtered = source2 .filter(v => (v._1 > 4)) val result = maxed .join(filtered).where(0).equalTo(0) .filter(_1 > 3) .groupBy(0) .reduceGroup {……} 1 3 4 5 2
  • 32.
    30 30 PythonAPI (upcoming) Graph API Apache Scala API Java API Common API Flink Optimizer MRQL Embedded Flink Local Runtime environment (Java collections) Local Environment (for debugging) Remote environment (Regular cluster execution) Apache Tez Standalone or YARN cluster Data storage Files HDFS S3 JDBC Azure tables … Single node execution § The optimizer is the component that selects an execution plan for a Common API program § Think of an AI system manipulating your program for you J § But don’t be scared – it works • Relational databases have been doing this for decades – Flink ports the technology to API-based systems Flink Optimizer 32
  • 33.
    A simple program 33 DataSet<Tuple5<Integer, String, String, String, Integer>> orders = … DataSet<Tuple2<Integer, Double>> lineitems = … DataSet<Tuple2<Integer, Integer>> filteredOrders = orders .filter(. . .) .project(0,4).types(Integer.class, Integer.class); DataSet<Tuple3<Integer, Integer, Double>> lineitemsOfOrders = filteredOrders .join(lineitems) .where(0).equalTo(0) .projectFirst(0,1).projectSecond(1) .types(Integer.class, Integer.class, Double.class); DataSet<Tuple3<Integer, Integer, Double>> priceSums = lineitemsOfOrders .groupBy(0,1).aggregate(Aggregations.SUM, 2); priceSums.writeAsCsv(outputPath);
  • 34.
    Two execution plans 34 GroupRed sort Combine Map DataSource Filter DataSource orders.tbl lineitem.tbl Join Hybrid Hash buildHT probe broadcast forward Map DataSource Filter DataSource orders.tbl lineitem.tbl Join Hybrid Hash buildHT probe hash-part [0] hash-part [0] hash-part [0,1] GroupRed sort Best plan forward depends on relative sizes of input files
  • 35.
    Flink Local Runtime 30 30 Python API (upcoming) Graph API Apache Scala API Java API Common API Flink Optimizer MRQL Embedded Flink Local Runtime environment (Java collections) Local Environment (for debugging) Remote environment (Regular cluster execution) Apache Tez Standalone or YARN cluster Data storage Files HDFS S3 JDBC Azure tables … Single node execution § Local runtime, not the distributed execution engine § Aka: what happens inside every parallel task 35
  • 36.
    Flink runtime operators § Sorting and hashing data • Necessary for grouping, aggregation, reduce, join, cogroup, delta iterations § Flink contains tailored implementations of hybrid hashing and external sorting in Java • Scale well with both abundant and restricted memory sizes 36
  • 37.
    Internal data representation 37 JVM Heap map JVM Heap reduce O Romeo, Romeo, wherefore art thou Romeo? 00110011 art, 1 O, 1 Romeo, 1 Romeo, 1 00110011 00010111 01110001 01111010 00010111 00110011 Network transfer Local sort How is intermediate data internally represented?
  • 38.
    Internal data representation § Two options: Java objects or raw bytes § Java objects • Easier to program • Can suffer from GC overhead • Hard to de-stage data to disk, may suffer from “out of memory exceptions” § Raw bytes • Harder to program (customer serialization stack, more involved runtime operators) • Solves most of memory and GC problems • Overhead from object (de)serialization § Flink follows the raw byte approach 38
  • 39.
    Memory in Flink public class WC { public String word; public int count; } empty page Pool of Memory Pages JVM Heap User code objects Sorting, hashing, caching Shuffling, broadcasts Unmanaged heap Managed heap Network buffers 39
  • 40.
    Memory in Flink(2) § Internal memory management • Flink initially allocates 70% of the free heap as byte[] segments • Internal operators allocate() and release() these segments § Flink has its own serialization stack • All accepted data types serialized to data segments § Easy to reason about memory, (almost) no OutOfMemory errors, reduces the pressure to the GC (smooth performance) 40
  • 41.
    Operating on serializeddata Microbenchmark § Sorting 1GB worth of (long, double) tuples § 67,108,864 elements § Simple quicksort 41
  • 42.
    Flink distributed execution 30 30 Python API (upcoming) Graph API Apache Scala API Java API Common API Flink Optimizer MRQL Embedded Flink Local Runtime environment (Java collections) Local Environment (for debugging) Remote environment (Regular cluster execution) Apache Tez Standalone or YARN cluster Data storage Files HDFS S3 JDBC Azure tables … Single node execution 42 § Pipelined • Same engine for Flink and Flink streaming § Pluggable • Local runtime can be executed on other engines • E.g., Java collections and Apache Tez
  • 43.
  • 44.
    Summary § Flinkdecouples API from execution • Same program can be executed in many different ways • Hopefully users do not need to care about this and still get very good performance § Unique Flink internal features • Pipelined execution, native iterations, optimizer, serialized data manipulation, good disk destaging § Very good performance • Known issues currently worked on actively 44
  • 45.
    Stay informed §flink.incubator.apache.org • Subscribe to the mailing lists! • http://flink.incubator.apache.org/community.html#mailing-lists § Blogs • flink.incubator.apache.org/blog • data-artisans.com/blog § Twitter • follow @ApacheFlink 45
  • 46.
  • 47.
    That’s it, timefor beer 47