This document discusses analysis of algorithms. It covers computation models like Turing machine and RAM models. It then discusses measuring the time complexity, space complexity, and order of growth of algorithms. Time complexity is measured based on the number of basic operations like comparisons. Space complexity depends on memory required. Order of growth classifies algorithms based on how their running time grows with input size (n), such as O(n), O(log n) etc. Asymptotic notations like Big O, Omega and Theta are used to represent the asymptotic time complexity of algorithms.