 Unit-1 : Boolean Algebra 
 Unit-2 : Minimization of Switching Functions 
 Unit-3 : Combinational Logic Design 
 Unit-4 : Programmable Logic Devices, Threshold Logic 
 Unit-5 : Sequential Circuits 
 Unit-6 : Algorithmic State Machines
 Digital Design: Morris Mano, PHI,2nd Edition. 
 Switching & Finite Automata Theory-Zvi Kohavi, 
TMH, 2nd Edition.
BINARY SYSTEMS PROBLEMS
Octal : 
16 = 8¹ x 2 + 8º x 0 => (16)10 = (20)8 
32 = 8¹ x 4 + 8º x 0 => (32)10 = (40)8 
20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40 
Hexadecimal : 
16 = 16¹ x 1 + 16º x 0 => (16)10 = (10)16 
32 = 16¹ x 2 + 16º x 0 => (32)10 = (20)8 
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B , 1C, 1D, 1E, 1F, 20
1.2-) What is the exact number of bytes in a system 
that contains (a) 32K byte, (b)64M bytes, and 
(c)6.4G byte ? 
(a) 32K byte: 
1K = 2¹º = 1,024 
32K = 32 x 2¹º = 32 x 1,024 = 32,768 
32K byte = 32,768 byte
(b) 64M byte: 
1M = 2²º = 1,048,576 
64M = 64 x 2²º = 64 x 1,048,576 = 67,108,864 
64M byte = 67,108,864 byte 
(c) 6.4G byte: 
1G = 2³º = 1,073,741,824 
6.4G = 6.4 x 2³º = 6.4 x 1,073,741,824 = 6,871,747,674 
6.4G byte = 6,871,747,674 byte
1.3-) What is the largest binary number that can be 
expressed with 12 bits? What is the equivalent 
decimal and hexadecimal ? 
Binary: 
(111111111111)2 
Decimal: 
(111111111111)2 = 1x 2º+ 1 x 2¹ + 1 x 2² +…..+ 1 x 2¹¹ + 1 x 2¹² 
(111111111111)2 = 4,095 
Hexadecimal: 
(1111 1111 1111)2 
F F F 
= (FFF)16
1.4-) Convert the following numbers with the 
indicated bases to decimal : (4310)5 , and (198)12 . 
(4310)5 = 0 x 5º + 1 x 5¹ + 3 x 5² + 4 x 5³ = 0 + 5 + 75 + 500 
(4310)5 = 580 
(198)12 = 8 x 12º + 9 x 12¹ + 1 x 12² = 8 + 108 + 144 
(198)12 = 260
1.7-) Express the following numbers in decimal : 
(10110.0101)2 , (16.5)16 . 
( 1 0 1 1 0 . 0 1 0 1 )2 
4 3 2 1 0 -1 -2 -3 -4 
(10110.0101)2 = 2 + 4 + 16 + (1/4) + (1/16) 
(10110.0101)2 = 22.3125 
( 1 6 . 5 )16 
1 0 -1 
(16.5)16 = 6 + 16 + (5/16) 
(16.5)16 = 22.3125 
= 2¹ + 2² + (2^4) +( 2^-2) + (2^-4)
1.8-) Convert the following binary numbers to 
hexadecimal and to decimal : (a) 1.11010 
(a) ( 1 . 1101 0 )2 = ( 1 . D )16 = 1 x 16º + D x (16^-1) 
1 D 0 0 -1
1.9-) Convert the hexadecimal number 68BE to 
binary and then from binary convert it to octal . 
(68BE)16 
Binary form: 
(0110 1000 1011 
1110)2=(0110100010111110)2 
6 8 B E 
Octal form: 
(0 110 100 010 111 110)2 
0 6 4 2 7 6 =(064276)8
(a) 1.10-) Convert the decimal number 345 to 
binary in two ways : 
Convert directly to binary; 
Convert first to hexadecimal, then from 
hexadecimal to binary. Which method is faster 
?
Method 1: 
(345)10 
Number Divided by 2 Remainder 
345 345/2=172 1 
172 172/2=86 0 
86 86/2=43 0 
43 43/2=21 1 
21 21/2=10 1 
10 10/2=5 0 
5 5/2=2 1 
2 2/2=1 1
Method 2: 
Number 
Divided by 
16 
Remainder 
345 345/16=21 9 
21 21/16=1 5 
(345)10=(159)16 (1 101 1001)2
1.11-) Do the following conversion problems : 
(a) Convert decimal 34.4375 to binary . 
(b) Calculate the binary equivalent of 1/3 out 
to 8 places. 
Then convert from binary to decimal. How 
close is the result to 1/3 ? 
(c) Convert the binary result in (b) into 
hexadecimal. Then convert the result to 
decimal . Is the answer the same ?
(a) 34.4375 
34 0.4375 
34:2=17 r=0 
17:2=8 r=1 
8:2=4 r=0 
4:2=2 r=0 
2:2=1 r=0 
34=(100010)2 
0.4375*2=0.875 r=0 
0.875*2=1.75 r=1 
0.75*2=1.5 r=1 
0.5*2=1.0 r=1 
0*2=0 r=0 
0.4375=(0.01110)2 
34.4375=(100010.01110)2
(b) 1/3=0.3333… 
0.33333*2=0.66666 r=0 
0.66666*2=1.33332 r=1 
0.33332*2=0.66664 r=0 
0.66664*2=1.33328 r=1 
. 
. 
. 
0.3333…=(0.010101….)= 0+ ¼ + 0 + 1/8 + 
0 + 1/32 +… =~0.33333…
(c) 
0.010101010…=0.0101 0101 0101 
(0.555..)16=5/16 +5/256 +5/4096 +…=~0.33203
1.12-) Add and multiply the following numbers 
without 
converting them to decimal. 
(a) Binary numbers 1011 and 101 . 
(a) 1011 (11) 1011(11) 
101 (5) 101(5) 
+__________ x_____ 
10000(16) 1011 
0000 
+ 1011 
_________ 
110111 (55)
1.13-) Perform the following division in binary : 
1011111 ÷ 101 . 
(1011111)2=95 
(101)2=5 
95/5=19 (10011)2 
1011111 101 
101 10011 
000111 
101 
0101 
101 
0000
1.14-) Find the 9’s- and the 10’s-complement of 
the following decimal numbers : 
(a) 98127634 (b) 72049900 (c) 10000000 (d) 
00000000 . 
9’s comlements : 
(a) 99999999-98127634=01872365 
(b) 99999999-72049900=27950099 
(c) 99999999-10000000=89999999 
(d) 99999999-0000000=99999999
10’s complements 
(a)100000000- 98127634= 01872366 
(b)100000000-72049900=27950100 
(c)100000000-10000000=90000000
1.16-) Obtain the 1’s and 2’S complements of the 
following binary numbers : 
(a)11101010 (b)01111110 (c)00000001 
(d)10000000 
1’s complements: 
(a) 00010101 (b)10000001 (c)11111110 (d)01111111 
2’s complement : 
(a) 00010110 (b)10000010 (c)11111111 (d)10000000
Boolean Algebra
1. Axiomatic definition of Boolean algebra 
2. Binary operators 
3. Postulates and Theorems 
4. Switching functions 
5. Canonical forms and standard forms 
6. Simplification of switching functions using 
theorems
1. Axiomatic definition of Boolean algebra 
2. Binary operators
3. Postulates and Theorems
Postulate 2 (a) x+0 = x (b) x.1 = x 
Postulate 5 (a) x+x’ = 1 (b) x.x’ = 0 
Theorem 1 (a) x+x = x (b) x.x = x 
Theorem 2 (a) x+1 = 1 (b) x.0 = 0 
Theorem3, involution (x’)’ = x 
Postulate3, commutative (a) x+y = y+x (b) xy = yx 
Theorem4, associative (a) x+(y+z)=(x+y)+z (b) x(yz) = (xy)z 
Postulate4, distributive (a) x(y+z)=xy+xz (b) x+yz = (x+y)(x+z) 
Theorem5, DeMorgan (a) (x+y)’ = x’y’ (b) (xy)’ = x’+y’ 
Theorem6, absorption (a) x+xy = x (b) x(x+y)=x
4. Switching functions
x y x.y x y x+y x x’ 
0 0 0 0 0 0 0 1 
0 1 0 0 1 1 1 0 
1 0 0 1 0 1 
1 1 1 1 1 1 
x.(y+z) = (x.y)+(x.z) 
x y z Y+z x.(y+z) x.y x.z (x.y)+x.z 
0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 
0 1 0 1 0 0 0 0 
0 1 1 1 0 0 0 0 
1 0 0 0 0 0 0 0 
1 0 1 1 1 0 1 1 
1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1
Operator Precedence 
1.( ) 
2.NOT 
3.AND 
4.OR
x y z F1 F2 F3 F4 
0 0 0 0 0 0 0 
0 0 1 0 1 1 1 
0 1 0 0 0 0 0 
0 1 1 0 0 1 1 
1 0 0 0 1 1 1 
1 0 1 0 1 1 1 
1 1 0 1 1 0 0 
1 1 1 0 1 0 0
x 
y 
z 
F1 
z 
y 
F2 
x 
(a) F1 = xyz’ 
(b) F2 = x+y’z 
(c) F3 = x’y’z+x’yz+xy’ 
F3 
x 
y 
z
F4 
(c) F4 = xy’+x’z 
x 
y 
z 
Implementation of Boolean Function with GATES
1. x+x’y = (x+x’)(x+y) 
= 1.(x+y)=x+y 
2. x(x’+y) = xx’+xy 
= 0+xy=xy 
3. x’y’z+x’yz+xy’ 
= x’z(y’+y)+xy’ 
= x’z+xy’ 
4. xy+x’z+yz (Consensus Theorem) 
=xy+x’z+yz(x+x’) 
=xy+x’z+xyz+x’yz 
=xy(1+z)+x’z(1+y) 
=xy+x’z 
5. (x+y)(x’+z)(y+z)=(x+y)(x’+z) 
by duality from function 4
(A+B+C)’ = (A+X)’ 
= A’X’ 
= A’.(B+C)’ 
= A’.(B’C’) 
= A’B’C’ 
(A+B+C+D+…..Z)’ = A’B’C’D’…..Z’ 
(ABCD….Z)’ = A’+B’+C’+D’+….+Z’ 
Example using De Morgan’s Theorem (Method-1) 
F1 = x’yz’+x’y’z 
F1’ = (x’yz’+x’y’z)’ 
= (x+y’+z)(x+y+z’) 
F2 = x(y’z’+yz) 
F2’= [x(y’z’+yz)]’ 
= x’+(y+z)(y’+z’)
F1 = x’yz’ + x’y’z 
Dual of F1 = (x’+y+z’)(x’+y’+z) 
Complement  F1’ = (x+y’+z)(x+y+z’) 
F2 = x(y’z’+yz) 
Dual of F2=x+[(y’+z’)(y+z)] 
Complement =F2’= x’+ (y+z)(y’+z’)
Minterm or a Standard Product 
n variables forming an AND term provide 2n possible 
combinations, called minterms or standard products (denoted as 
m1, m2 etc.). 
Variable primed if a bit is 0 
Variable unprimed if a bit is 1 
Maxterm or a Standard Sum 
n variables forming an OR term provide 2n possible 
combinations, called maxterms or standard sums (denoted as 
M1,M2 etc.). 
Variable primed if a bit is 1 
Variable unprimed if a bit is 0
MINTERMS MAXTERMS 
x y z Term Designation Term Designation 
0 0 0 x’y’z’ m0 x+y+z M0 
0 0 1 x’y’z m1 x+y+z’ M1 
0 1 0 x’yz’ m2 x+y’+z M2 
0 1 1 x’yz m3 x+y’+z’ M3 
1 0 0 xy’z’ m4 x’+y+z M4 
1 0 1 xy’z m5 x’+y+z’ M5 
1 1 0 xyz’ m6 x’+y’+z M6 
1 1 1 xyz m7 x’+y’+z’ M7
x y z Function f1 Function f2 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 
f1 = x’y’z+xy’z’+xyz =m1 + m4 + m7 
f2 = x’yz+xy’z+xyz’+xyz = m3 + m5 + m6 + 
m7
f1 = x’y’z+xy’z’+xyz 
f1’ = x’y’z’+x’yz’+x’yz+xy’z+xyz’ 
f1 =(x+y+z)(x+y’+z)(x+y’+z’)(x’+y+z’) (x’+y’+z) 
= M0.M2.M3.M5.M6 
= M0M2M3M5M6 
f2 = x’yz+xy’z+xyz’+xyz 
f2’ = x’y’z’+x’y’z+x’yz’+xy’z’ 
f2 = (x+y+z)(x+y+z’)(x+y’+z)(x’+y+z) 
= M0 M1 M2 M4
Boolean functions expressed as a sum of 
minterms or product of maxterms are said to 
be in canonical form. 
m3+m5+m6+m7 or M0 M1 M2 M4
Example: F = A+B’C 
F = A(B+B’)+B’C(A+A’) 
= AB+AB’+AB’C+A’B’C 
= AB(C+C’)+AB’(C+C’)+AB’C+A’B’C 
= ABC+ABC’+AB’C+AB’C’+AB’C+A’B’C 
= A’B’C+AB’C’+AB’C+ABC’+ABC 
= m1+m4+m5+m6+m7 
F(A,B,C)=(1,4,5,6,7) 
ORing of term AND terms of variables A,B &C 
They are minterms of the function
Example: F = xy+x’z 
F = xy+x’z 
F = (xy+x’)(xy+z) distr.law (x+yz)=(x+y)(x+z) 
= (x+x’)(y+x’)(x+z)(y+z) 
= (x’+y)(x+z)(y+z) 
= (x’+y+zz’)(x+z+yy’)(y+z+xx’) 
= 
(x’+y+z)(x’+y+z’)(x+z+y)(x+z+y’)(y+z+x)(y+z+x’ 
) 
= (x+y+z)(x+y’+z)(x’+y+z)(x’+y+z’) 
= M0 M2 M4 M5 
F(x,y,z) = (0,2,4,5) 
ANDing of terms Maxterms of the function (4 OR 
terms of variables 
x,y&z)
F(A,B,C) = (1,4,5,6,7) 
 sum of minterms 
F’(A,B,C) = (0,2,3) 
= m0+m2+m3 
F(A,B,C) = (m0+m2+m3)’ 
= m0’.m2’.m3’ 
= M0 M2 M3 
= (0,2,3) 
 Product of maxterms 
Similarly 
F(x,y,z) = (0,2,4,5) 
F(x,y,z) = (1,3,6,7)
Sum of Products (OR operations) 
F1 = y’+xy+x’yz’ 
(AND term/product term) 
Product of Sums (AND operations) 
F2=x(y’+z)(x’+y+z’+w) 
(OR term/sum term) 
Non-standard form 
F3=(AB+CD)(A’B’+C’D’) 
Standard form of F3 
F3=ABC’D’ + A’B’CD
x y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
Operator 
symbols 
+ ,  ,  
F0 = 0 F1 = xy F2 = xy’ F3 = x 
F4 = x’y F5 = y F6 = xy’ +x’y F7= x +y 
F8 = (x+y)’ F9 = xy +x’y’ F10 = y’ F11 = x +y’ 
F12 = x’ F13 = x’ + y F14 = (xy)’ F15 = 1
 Equivalence is also known as equality, coincidence, 
and exclusive NOR. 
 16 logic operations are obtained from two variables 
x & y 
 Standard gates used in digital design are: 
complement, transfer, AND, OR , NAND, NOR, XOR & 
XNOR (equivalence).
NAME GRAPHIC 
SYMBOL 
ALGEBRIC 
FUNCTION 
TRUTH 
TABLE 
AND F=XY X Y F 
0 0 0 
0 1 0 
1 0 0 
1 1 1 
OR F=X+Y X Y F 
0 0 0 
0 1 1 
1 0 1 
1 1 1 
X 
Y 
F 
X 
Y 
F
NAME GRAPHIC 
SYMBOL 
ALGEBRIC 
FUNCTION 
TRUTH 
TABLE 
Inverter 
F=X’ 
X F 
0 1 
1 0 
Buffer 
F=X 
X F 
0 0 
1 1 
NAND F=(XY)’ 
X Y F 
0 0 1 
0 1 1 
1 0 1 
1 1 0 
X F 
X F 
X F 
Y
NAME GRAPHIC 
SYMBOL 
ALGEBRIC 
FUNCTION 
TRUTH 
TABLE 
X 
NOR F=(X+Y)’ 
X Y F 
0 0 1 
0 1 0 
1 0 0 
1 1 0 
Exclusive-OR 
(XOR) 
F=XY’+X’Y 
= X  Y 
X Y F 
0 0 0 
0 1 1 
1 0 1 
1 1 0 
Exclusive-NOR 
or 
Equivalence 
F=XY+X’Y’ 
=X Y 
X Y F 
0 0 1 
0 1 0 
1 0 0 
1 1 1 
Y F 
X F 
Y 
X F 
Y
Y (X Y) Z=(X+Y) Z’ 
Y 
x 
(X+Y)’ 
=XZ’+YZ 
’ 
[Z+(X+Y)’]’ 
(Y+Z)’ 
(X ( Y Z)=X’(Y+ Z) 
=X’Y+X’ 
Z 
[X+(Y+Z)’]’ 
Z 
X 
Z 
Demonstrating the nonassociativity of the NOR operator 
(X  Y) Z  X (Y Z)
XY 
Z 
(X+Y+Z) 
’ 
X 
Y 
Z 
(XYZ)’ 
(a) There input NOR gate (b) There input NAND gate 
A 
B 
C 
D 
E 
F=[(ABC)’. (DE)’]’=ABC+DE 
(c) Cascaded NAND gates 
Multiple-input AND cascaded NOR and NAND gates
X 
Y 
Z F=X  Y  Z 
(a) Using two input 
gates 
X 
Y 
Z 
(b) Three input gates 
(b) Three input exclusive OR gates 
TRUTH TABLE 
X Y Z F 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 0 
XOR 
XNOR 
Odd 
functio 
n 
Even 
functio 
n 
F=X  Y  Z
Signal amplitude assignment and type of logic 
1 H 
0 
L 
0 
1 
H 
L 
LOGIC 
VALUE 
SIGNAL 
VALUE 
LOGIC 
VALUE 
SIGNAL 
VALUE 
Negative Logic 
Positive Logic
DEMONSTRATION OF POSITIVE AND 
X y z 
1 1 0 
1 0 1 
0 1 1 
0 0 1 
Truth table for negative 
logic 
L=1 H=0 
NEGATIVE LOGIC 
x 
z 
y 
Graphic symbol for negative 
logic NOR gate 
Same gate can function 
+ive logic NAND or -ive logic NOR 
+ive logic NOR or -ive logic 
NAND
 F(A,B,C)=(1,4,5,6,7) 
 F(A,B,C)=(1,2,3,6,7) 
 F(x,y,z)=(1,4,5,6,7) 
 F(x,y,z) = (0,2,4,5)
The End

Unit 1(stld)

  • 2.
     Unit-1 :Boolean Algebra  Unit-2 : Minimization of Switching Functions  Unit-3 : Combinational Logic Design  Unit-4 : Programmable Logic Devices, Threshold Logic  Unit-5 : Sequential Circuits  Unit-6 : Algorithmic State Machines
  • 3.
     Digital Design:Morris Mano, PHI,2nd Edition.  Switching & Finite Automata Theory-Zvi Kohavi, TMH, 2nd Edition.
  • 4.
  • 5.
    Octal : 16= 8¹ x 2 + 8º x 0 => (16)10 = (20)8 32 = 8¹ x 4 + 8º x 0 => (32)10 = (40)8 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40 Hexadecimal : 16 = 16¹ x 1 + 16º x 0 => (16)10 = (10)16 32 = 16¹ x 2 + 16º x 0 => (32)10 = (20)8 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B , 1C, 1D, 1E, 1F, 20
  • 6.
    1.2-) What isthe exact number of bytes in a system that contains (a) 32K byte, (b)64M bytes, and (c)6.4G byte ? (a) 32K byte: 1K = 2¹º = 1,024 32K = 32 x 2¹º = 32 x 1,024 = 32,768 32K byte = 32,768 byte
  • 7.
    (b) 64M byte: 1M = 2²º = 1,048,576 64M = 64 x 2²º = 64 x 1,048,576 = 67,108,864 64M byte = 67,108,864 byte (c) 6.4G byte: 1G = 2³º = 1,073,741,824 6.4G = 6.4 x 2³º = 6.4 x 1,073,741,824 = 6,871,747,674 6.4G byte = 6,871,747,674 byte
  • 8.
    1.3-) What isthe largest binary number that can be expressed with 12 bits? What is the equivalent decimal and hexadecimal ? Binary: (111111111111)2 Decimal: (111111111111)2 = 1x 2º+ 1 x 2¹ + 1 x 2² +…..+ 1 x 2¹¹ + 1 x 2¹² (111111111111)2 = 4,095 Hexadecimal: (1111 1111 1111)2 F F F = (FFF)16
  • 9.
    1.4-) Convert thefollowing numbers with the indicated bases to decimal : (4310)5 , and (198)12 . (4310)5 = 0 x 5º + 1 x 5¹ + 3 x 5² + 4 x 5³ = 0 + 5 + 75 + 500 (4310)5 = 580 (198)12 = 8 x 12º + 9 x 12¹ + 1 x 12² = 8 + 108 + 144 (198)12 = 260
  • 10.
    1.7-) Express thefollowing numbers in decimal : (10110.0101)2 , (16.5)16 . ( 1 0 1 1 0 . 0 1 0 1 )2 4 3 2 1 0 -1 -2 -3 -4 (10110.0101)2 = 2 + 4 + 16 + (1/4) + (1/16) (10110.0101)2 = 22.3125 ( 1 6 . 5 )16 1 0 -1 (16.5)16 = 6 + 16 + (5/16) (16.5)16 = 22.3125 = 2¹ + 2² + (2^4) +( 2^-2) + (2^-4)
  • 11.
    1.8-) Convert thefollowing binary numbers to hexadecimal and to decimal : (a) 1.11010 (a) ( 1 . 1101 0 )2 = ( 1 . D )16 = 1 x 16º + D x (16^-1) 1 D 0 0 -1
  • 12.
    1.9-) Convert thehexadecimal number 68BE to binary and then from binary convert it to octal . (68BE)16 Binary form: (0110 1000 1011 1110)2=(0110100010111110)2 6 8 B E Octal form: (0 110 100 010 111 110)2 0 6 4 2 7 6 =(064276)8
  • 13.
    (a) 1.10-) Convertthe decimal number 345 to binary in two ways : Convert directly to binary; Convert first to hexadecimal, then from hexadecimal to binary. Which method is faster ?
  • 14.
    Method 1: (345)10 Number Divided by 2 Remainder 345 345/2=172 1 172 172/2=86 0 86 86/2=43 0 43 43/2=21 1 21 21/2=10 1 10 10/2=5 0 5 5/2=2 1 2 2/2=1 1
  • 15.
    Method 2: Number Divided by 16 Remainder 345 345/16=21 9 21 21/16=1 5 (345)10=(159)16 (1 101 1001)2
  • 16.
    1.11-) Do thefollowing conversion problems : (a) Convert decimal 34.4375 to binary . (b) Calculate the binary equivalent of 1/3 out to 8 places. Then convert from binary to decimal. How close is the result to 1/3 ? (c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal . Is the answer the same ?
  • 17.
    (a) 34.4375 340.4375 34:2=17 r=0 17:2=8 r=1 8:2=4 r=0 4:2=2 r=0 2:2=1 r=0 34=(100010)2 0.4375*2=0.875 r=0 0.875*2=1.75 r=1 0.75*2=1.5 r=1 0.5*2=1.0 r=1 0*2=0 r=0 0.4375=(0.01110)2 34.4375=(100010.01110)2
  • 18.
    (b) 1/3=0.3333… 0.33333*2=0.66666r=0 0.66666*2=1.33332 r=1 0.33332*2=0.66664 r=0 0.66664*2=1.33328 r=1 . . . 0.3333…=(0.010101….)= 0+ ¼ + 0 + 1/8 + 0 + 1/32 +… =~0.33333…
  • 19.
    (c) 0.010101010…=0.0101 01010101 (0.555..)16=5/16 +5/256 +5/4096 +…=~0.33203
  • 20.
    1.12-) Add andmultiply the following numbers without converting them to decimal. (a) Binary numbers 1011 and 101 . (a) 1011 (11) 1011(11) 101 (5) 101(5) +__________ x_____ 10000(16) 1011 0000 + 1011 _________ 110111 (55)
  • 21.
    1.13-) Perform thefollowing division in binary : 1011111 ÷ 101 . (1011111)2=95 (101)2=5 95/5=19 (10011)2 1011111 101 101 10011 000111 101 0101 101 0000
  • 22.
    1.14-) Find the9’s- and the 10’s-complement of the following decimal numbers : (a) 98127634 (b) 72049900 (c) 10000000 (d) 00000000 . 9’s comlements : (a) 99999999-98127634=01872365 (b) 99999999-72049900=27950099 (c) 99999999-10000000=89999999 (d) 99999999-0000000=99999999
  • 23.
    10’s complements (a)100000000-98127634= 01872366 (b)100000000-72049900=27950100 (c)100000000-10000000=90000000
  • 24.
    1.16-) Obtain the1’s and 2’S complements of the following binary numbers : (a)11101010 (b)01111110 (c)00000001 (d)10000000 1’s complements: (a) 00010101 (b)10000001 (c)11111110 (d)01111111 2’s complement : (a) 00010110 (b)10000010 (c)11111111 (d)10000000
  • 25.
  • 26.
    1. Axiomatic definitionof Boolean algebra 2. Binary operators 3. Postulates and Theorems 4. Switching functions 5. Canonical forms and standard forms 6. Simplification of switching functions using theorems
  • 27.
    1. Axiomatic definitionof Boolean algebra 2. Binary operators
  • 28.
  • 39.
    Postulate 2 (a)x+0 = x (b) x.1 = x Postulate 5 (a) x+x’ = 1 (b) x.x’ = 0 Theorem 1 (a) x+x = x (b) x.x = x Theorem 2 (a) x+1 = 1 (b) x.0 = 0 Theorem3, involution (x’)’ = x Postulate3, commutative (a) x+y = y+x (b) xy = yx Theorem4, associative (a) x+(y+z)=(x+y)+z (b) x(yz) = (xy)z Postulate4, distributive (a) x(y+z)=xy+xz (b) x+yz = (x+y)(x+z) Theorem5, DeMorgan (a) (x+y)’ = x’y’ (b) (xy)’ = x’+y’ Theorem6, absorption (a) x+xy = x (b) x(x+y)=x
  • 41.
  • 46.
    x y x.yx y x+y x x’ 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 x.(y+z) = (x.y)+(x.z) x y z Y+z x.(y+z) x.y x.z (x.y)+x.z 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1
  • 47.
    Operator Precedence 1.() 2.NOT 3.AND 4.OR
  • 48.
    x y zF1 F2 F3 F4 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0
  • 49.
    x y z F1 z y F2 x (a) F1 = xyz’ (b) F2 = x+y’z (c) F3 = x’y’z+x’yz+xy’ F3 x y z
  • 50.
    F4 (c) F4= xy’+x’z x y z Implementation of Boolean Function with GATES
  • 51.
    1. x+x’y =(x+x’)(x+y) = 1.(x+y)=x+y 2. x(x’+y) = xx’+xy = 0+xy=xy 3. x’y’z+x’yz+xy’ = x’z(y’+y)+xy’ = x’z+xy’ 4. xy+x’z+yz (Consensus Theorem) =xy+x’z+yz(x+x’) =xy+x’z+xyz+x’yz =xy(1+z)+x’z(1+y) =xy+x’z 5. (x+y)(x’+z)(y+z)=(x+y)(x’+z) by duality from function 4
  • 52.
    (A+B+C)’ = (A+X)’ = A’X’ = A’.(B+C)’ = A’.(B’C’) = A’B’C’ (A+B+C+D+…..Z)’ = A’B’C’D’…..Z’ (ABCD….Z)’ = A’+B’+C’+D’+….+Z’ Example using De Morgan’s Theorem (Method-1) F1 = x’yz’+x’y’z F1’ = (x’yz’+x’y’z)’ = (x+y’+z)(x+y+z’) F2 = x(y’z’+yz) F2’= [x(y’z’+yz)]’ = x’+(y+z)(y’+z’)
  • 53.
    F1 = x’yz’+ x’y’z Dual of F1 = (x’+y+z’)(x’+y’+z) Complement  F1’ = (x+y’+z)(x+y+z’) F2 = x(y’z’+yz) Dual of F2=x+[(y’+z’)(y+z)] Complement =F2’= x’+ (y+z)(y’+z’)
  • 54.
    Minterm or aStandard Product n variables forming an AND term provide 2n possible combinations, called minterms or standard products (denoted as m1, m2 etc.). Variable primed if a bit is 0 Variable unprimed if a bit is 1 Maxterm or a Standard Sum n variables forming an OR term provide 2n possible combinations, called maxterms or standard sums (denoted as M1,M2 etc.). Variable primed if a bit is 1 Variable unprimed if a bit is 0
  • 55.
    MINTERMS MAXTERMS xy z Term Designation Term Designation 0 0 0 x’y’z’ m0 x+y+z M0 0 0 1 x’y’z m1 x+y+z’ M1 0 1 0 x’yz’ m2 x+y’+z M2 0 1 1 x’yz m3 x+y’+z’ M3 1 0 0 xy’z’ m4 x’+y+z M4 1 0 1 xy’z m5 x’+y+z’ M5 1 1 0 xyz’ m6 x’+y’+z M6 1 1 1 xyz m7 x’+y’+z’ M7
  • 56.
    x y zFunction f1 Function f2 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 f1 = x’y’z+xy’z’+xyz =m1 + m4 + m7 f2 = x’yz+xy’z+xyz’+xyz = m3 + m5 + m6 + m7
  • 57.
    f1 = x’y’z+xy’z’+xyz f1’ = x’y’z’+x’yz’+x’yz+xy’z+xyz’ f1 =(x+y+z)(x+y’+z)(x+y’+z’)(x’+y+z’) (x’+y’+z) = M0.M2.M3.M5.M6 = M0M2M3M5M6 f2 = x’yz+xy’z+xyz’+xyz f2’ = x’y’z’+x’y’z+x’yz’+xy’z’ f2 = (x+y+z)(x+y+z’)(x+y’+z)(x’+y+z) = M0 M1 M2 M4
  • 58.
    Boolean functions expressedas a sum of minterms or product of maxterms are said to be in canonical form. m3+m5+m6+m7 or M0 M1 M2 M4
  • 59.
    Example: F =A+B’C F = A(B+B’)+B’C(A+A’) = AB+AB’+AB’C+A’B’C = AB(C+C’)+AB’(C+C’)+AB’C+A’B’C = ABC+ABC’+AB’C+AB’C’+AB’C+A’B’C = A’B’C+AB’C’+AB’C+ABC’+ABC = m1+m4+m5+m6+m7 F(A,B,C)=(1,4,5,6,7) ORing of term AND terms of variables A,B &C They are minterms of the function
  • 60.
    Example: F =xy+x’z F = xy+x’z F = (xy+x’)(xy+z) distr.law (x+yz)=(x+y)(x+z) = (x+x’)(y+x’)(x+z)(y+z) = (x’+y)(x+z)(y+z) = (x’+y+zz’)(x+z+yy’)(y+z+xx’) = (x’+y+z)(x’+y+z’)(x+z+y)(x+z+y’)(y+z+x)(y+z+x’ ) = (x+y+z)(x+y’+z)(x’+y+z)(x’+y+z’) = M0 M2 M4 M5 F(x,y,z) = (0,2,4,5) ANDing of terms Maxterms of the function (4 OR terms of variables x,y&z)
  • 61.
    F(A,B,C) = (1,4,5,6,7)  sum of minterms F’(A,B,C) = (0,2,3) = m0+m2+m3 F(A,B,C) = (m0+m2+m3)’ = m0’.m2’.m3’ = M0 M2 M3 = (0,2,3)  Product of maxterms Similarly F(x,y,z) = (0,2,4,5) F(x,y,z) = (1,3,6,7)
  • 62.
    Sum of Products(OR operations) F1 = y’+xy+x’yz’ (AND term/product term) Product of Sums (AND operations) F2=x(y’+z)(x’+y+z’+w) (OR term/sum term) Non-standard form F3=(AB+CD)(A’B’+C’D’) Standard form of F3 F3=ABC’D’ + A’B’CD
  • 63.
    x y F0F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Operator symbols + ,  ,  F0 = 0 F1 = xy F2 = xy’ F3 = x F4 = x’y F5 = y F6 = xy’ +x’y F7= x +y F8 = (x+y)’ F9 = xy +x’y’ F10 = y’ F11 = x +y’ F12 = x’ F13 = x’ + y F14 = (xy)’ F15 = 1
  • 65.
     Equivalence isalso known as equality, coincidence, and exclusive NOR.  16 logic operations are obtained from two variables x & y  Standard gates used in digital design are: complement, transfer, AND, OR , NAND, NOR, XOR & XNOR (equivalence).
  • 66.
    NAME GRAPHIC SYMBOL ALGEBRIC FUNCTION TRUTH TABLE AND F=XY X Y F 0 0 0 0 1 0 1 0 0 1 1 1 OR F=X+Y X Y F 0 0 0 0 1 1 1 0 1 1 1 1 X Y F X Y F
  • 67.
    NAME GRAPHIC SYMBOL ALGEBRIC FUNCTION TRUTH TABLE Inverter F=X’ X F 0 1 1 0 Buffer F=X X F 0 0 1 1 NAND F=(XY)’ X Y F 0 0 1 0 1 1 1 0 1 1 1 0 X F X F X F Y
  • 68.
    NAME GRAPHIC SYMBOL ALGEBRIC FUNCTION TRUTH TABLE X NOR F=(X+Y)’ X Y F 0 0 1 0 1 0 1 0 0 1 1 0 Exclusive-OR (XOR) F=XY’+X’Y = X  Y X Y F 0 0 0 0 1 1 1 0 1 1 1 0 Exclusive-NOR or Equivalence F=XY+X’Y’ =X Y X Y F 0 0 1 0 1 0 1 0 0 1 1 1 Y F X F Y X F Y
  • 69.
    Y (X Y)Z=(X+Y) Z’ Y x (X+Y)’ =XZ’+YZ ’ [Z+(X+Y)’]’ (Y+Z)’ (X ( Y Z)=X’(Y+ Z) =X’Y+X’ Z [X+(Y+Z)’]’ Z X Z Demonstrating the nonassociativity of the NOR operator (X  Y) Z  X (Y Z)
  • 70.
    XY Z (X+Y+Z) ’ X Y Z (XYZ)’ (a) There input NOR gate (b) There input NAND gate A B C D E F=[(ABC)’. (DE)’]’=ABC+DE (c) Cascaded NAND gates Multiple-input AND cascaded NOR and NAND gates
  • 71.
    X Y ZF=X  Y  Z (a) Using two input gates X Y Z (b) Three input gates (b) Three input exclusive OR gates TRUTH TABLE X Y Z F 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 XOR XNOR Odd functio n Even functio n F=X  Y  Z
  • 72.
    Signal amplitude assignmentand type of logic 1 H 0 L 0 1 H L LOGIC VALUE SIGNAL VALUE LOGIC VALUE SIGNAL VALUE Negative Logic Positive Logic
  • 73.
    DEMONSTRATION OF POSITIVEAND X y z 1 1 0 1 0 1 0 1 1 0 0 1 Truth table for negative logic L=1 H=0 NEGATIVE LOGIC x z y Graphic symbol for negative logic NOR gate Same gate can function +ive logic NAND or -ive logic NOR +ive logic NOR or -ive logic NAND
  • 74.
     F(A,B,C)=(1,4,5,6,7) F(A,B,C)=(1,2,3,6,7)  F(x,y,z)=(1,4,5,6,7)  F(x,y,z) = (0,2,4,5)
  • 75.