Numerical Methods - Interpolation
Unequal Intervals
Dr. N. B. Vyas
Department of Mathematics,
Atmiya Institute of Tech. and Science, Rajkot (Guj.)
niravbvyas@gmail.com
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn
This polynomial Pn is called interpolation polynomial.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn
This polynomial Pn is called interpolation polynomial.
x0, x1, . . . , xn is called the nodes ( tabular points, pivotal
points or arguments).
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x
and y, where the values of x need not necessarily be equally
spaced.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x
and y, where the values of x need not necessarily be equally
spaced.
It is required to find Pn(x), a polynomial of degree n such that y
and Pn(x) agree at the tabulated points.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x
and y, where the values of x need not necessarily be equally
spaced.
It is required to find Pn(x), a polynomial of degree n such that y
and Pn(x) agree at the tabulated points.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
+
(x − x0)(x − x2) . . . (x − xn)
(x1 − x0)(x1 − x2) . . . (x1 − xn)
y1 + . . .
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
+
(x − x0)(x − x2) . . . (x − xn)
(x1 − x0)(x1 − x2) . . . (x1 − xn)
y1 + . . .
+
(x − x0)(x − x1) . . . (x − xn−1)
(xn − x0)(xn − x1) . . . (xn − xn−1)
yn
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
+
(x − x0)(x − x2) . . . (x − xn)
(x1 − x0)(x1 − x2) . . . (x1 − xn)
y1 + . . .
+
(x − x0)(x − x1) . . . (x − xn−1)
(xn − x0)(xn − x1) . . . (xn − xn−1)
yn
NOTE:
The above formula can be used irrespective of whether the values
x0, x1, . . . , xn are equally spaced or not.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
+
(y − y0)(y − y2) . . . (y − yn)
(y1 − y0)(y1 − y2) . . . (y1 − yn)
x1 + . . .
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
+
(y − y0)(y − y2) . . . (y − yn)
(y1 − y0)(y1 − y2) . . . (y1 − yn)
x1 + . . .
+
(y − y0)(y − y1) . . . (y − yn−1)
(yn − y0)(yn − y1) . . . (yn − yn−1)
xn
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
+
(y − y0)(y − y2) . . . (y − yn)
(y1 − y0)(y1 − y2) . . . (y1 − yn)
x1 + . . .
+
(y − y0)(y − y1) . . . (y − yn−1)
(yn − y0)(yn − y1) . . . (yn − yn−1)
xn
This relation is referred as Lagrange’s inverse interpolation
formula.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Given the table of values:
x 150 152 154 156
y =
√
x 12.247 12.329 12.410 12.490
Evaluate
√
155 using Lagrange’s interpolation formula.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
+
(x − x0)(x − x1)(x − x3)
(x2 − x0)(x2 − x1)(x2 − x3)
y2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
+
(x − x0)(x − x1)(x − x3)
(x2 − x0)(x2 − x1)(x2 − x3)
y2
+
(x − x0)(x − x1)(x − x2)
(x3 − x0)(x3 − x1)(x3 − x2)
y3
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
+
(x − x0)(x − x1)(x − x3)
(x2 − x0)(x2 − x1)(x2 − x3)
y2
+
(x − x0)(x − x1)(x − x2)
(x3 − x0)(x3 − x1)(x3 − x2)
y3
for x = 155
∴ f(155) =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Compute f(0.4) for the table below by the Lagrange’s
interpolation:
x 0.3 0.5 0.6
f(x) 0.61 0.69 0.72
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using Lagrange’s formula, find the form of f(x) for the following
data:
x 0 1 2 5
f(x) 2 3 12 147
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using Lagrange’s formula, find x for y = 7 for the following data:
x 1 3 4
y 4 12 19
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using Lagrange’s formula, express the function
3x2 + x + 1
(x − 1)(x − 2)(x − 3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
+
(x − x0)(x − x1)
(x2 − x0)(x2 − x1)
y2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
+
(x − x0)(x − x1)
(x2 − x0)(x2 − x1)
y2
substituting above values, we get
y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
+
(x − x0)(x − x1)
(x2 − x0)(x2 − x1)
y2
substituting above values, we get
y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Thus
3x2 + x + 1
(x − 1)(x − 2)(x − 3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Thus
3x2 + x + 1
(x − 1)(x − 2)(x − 3)
=
2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)
(x − 1)(x − 2)(x − 3)
=
2.5
(x − 1)
-
15
(x − 2)
+
15.5
(x − 3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
E(f, x) = f(x) − Pn(x) =
(x − x0)(x − x1) . . . (x − xn)
(n + 1)!
f(n+1)(ξ)
where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
E(f, x) = f(x) − Pn(x) =
(x − x0)(x − x1) . . . (x − xn)
(n + 1)!
f(n+1)(ξ)
where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)
since, ξ is an unknown, it is difficult to find the value of error.
However, we can find a bound of the error. The bound of the
error is obtained as
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
E(f, x) = f(x) − Pn(x) =
(x − x0)(x − x1) . . . (x − xn)
(n + 1)!
f(n+1)(ξ)
where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)
since, ξ is an unknown, it is difficult to find the value of error.
However, we can find a bound of the error. The bound of the
error is obtained as
|E(f, x)| ≤
|(x − x0)(x − x1) . . . (x − xn)|
(n + 1)!
max
a≤ξ≤b
|f(n+1)(ξ)|
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867, find
an approximate value of sin(0.15) by Lagrange interpolation.
Obtain a bound on the error at x = 0.15.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
To increase the degree the addition of another interpolation point
leads to re-computation.
i.e. no previous work is useful.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
To increase the degree the addition of another interpolation point
leads to re-computation.
i.e. no previous work is useful.
E.g: In calculating Pk(x), no obvious advantage can be taken of
the fact that one already has calculated Pk−1(x).
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
To increase the degree the addition of another interpolation point
leads to re-computation.
i.e. no previous work is useful.
E.g: In calculating Pk(x), no obvious advantage can be taken of
the fact that one already has calculated Pk−1(x).
That means we need to calculate entirely new polynomial.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Then the first divided difference of f for the arguments
x0, x1, . . . , xn are defined by ,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Then the first divided difference of f for the arguments
x0, x1, . . . , xn are defined by ,
f(x0, x1) =
f(x1) − f(x0)
x1 − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Then the first divided difference of f for the arguments
x0, x1, . . . , xn are defined by ,
f(x0, x1) =
f(x1) − f(x0)
x1 − x0
f(x1, x2) =
f(x2) − f(x1)
x2 − x1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
The second divided difference of f for three arguments
x0, x1, x2 is defined by
f(x0, x1, x2) =
f(x1, x2) − f(x0, x1)
x2 − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
The second divided difference of f for three arguments
x0, x1, x2 is defined by
f(x0, x1, x2) =
f(x1, x2) − f(x0, x1)
x2 − x0
and similarly the divided difference of order n is defined by
f(x0, x1, . . . , xn) =
f(x1, x2, . . . , xn) − f(x0, x1, . . . , xn−1)
xn − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Properties:
The divided differences are symmetrical in all their arguments;
that is, the value of any divided difference is independent of the
order of the arguments.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Properties:
The divided differences are symmetrical in all their arguments;
that is, the value of any divided difference is independent of the
order of the arguments.
The divided difference operator is linear.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Properties:
The divided differences are symmetrical in all their arguments;
that is, the value of any divided difference is independent of the
order of the arguments.
The divided difference operator is linear.
The nth order divided differences of a polynomial of degree n are
constant, equal to the coefficient of xn.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
By the definition of divided difference,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
By the definition of divided difference,
f(x, x0) =
f(x) − f(x0)
x − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
By the definition of divided difference,
f(x, x0) =
f(x) − f(x0)
x − x0
∴
f(x) = f(x0) + (x − x0)f(x, x0) − −(1)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
which yields
f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
which yields
f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2)
Similarly
f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
which yields
f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2)
Similarly
f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3)
and in general
f(x, x0, ..., xn−1) = f(x0, x1, ..., xn) + (x − xn)f(x, x0, x1, ..., xn) − −(4)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on, and finally the last term (4) by
(x − x0) (x − x1) ... (x − xn−1) and
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on, and finally the last term (4) by
(x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4)
we obtain
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on, and finally the last term (4) by
(x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4)
we obtain
f(x) =
f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ... +
(x − x0) (x − x1) ... (x − xn−1) f (x0, x1, ..., xn)
This formula is called Newton’s divided difference formula.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
The divided difference upto third order
x y 1stdiv.diff. 2nddiv.diff. 3rddiv.diff.
x0 y0
[x0, x1]
x1 y1 [x0, x1, x2]
[x1, x2] [x0, x1, x2, x3]
x2 y2 [x1, x2, x3]
[x2, x3]
x3 y3
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Obtain the divided difference table for the data:
x -1 0 2 3
y -8 3 1 12
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. We have the following divided difference table for the data:
x y First d.d Second d.d Third d.d
-1 -8
3 + 8
0 + 1
= 11
0 3
−1 − 11
2 + 1
= −4
1 − 3
2 − 0
= −1
4 + 4
3 + 1
= 2
2 1
11 + 1
3 − 0
= 4
12 − 1
3 − 2
= 11
3 12
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find f(x) as a polynomial in x for the following data by Newtons
divided difference formula:
x -4 -1 0 2 5
f(x) 1245 33 5 9 1335
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. We have the following divided difference table for the data:
x y 1st d.d 2nd d.d 3rd d.d 4th d.d
-4 1245
−404
-1 33 94
−28 −14
0 5 10 3
2 13
2 9 88
442
5 1335
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
+ (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
+ (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4]
= ...
= 3x4 − 5x3 + 6x2 − 14x + 5
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find f(x) as a polynomial in x for the following data by Newtons
divided difference formula:
x -2 -1 0 1 3 4
f(x) 9 16 17 18 44 81
Hence, interpolate at x = 0.5 and x = 3.1.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. We form the divided difference table for the given data.
x f(x) 1st d.d 2nd d.d 3rd d.d 4th d.d
−2 9
7
−1 16 −3
1 1
0 17 0 0
1 1
1 18 4 0
13 1
3 44 8
37
4 81
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
= ...
= x3 + 17
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find the missing term in the following table:
x 0 1 2 3 4
y 1 3 9 - 81
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Divided difference table:
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Divided difference table:
By Newton’s divided difference formula
f(x) =
f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ...
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
Spline interpolation is a form of interpolation where the
interpolant is a special type of piecewise polynomial called a
spline
Consider the problem of interpolating between the data points
(x0, y0), (x1, y1), . . . , (xn, yn) by means of spline fitting.
Then the cubic spline f(x) is such that
(i) f(x) is a linear polynomial outside the interval (x0, xn)
(ii) f(x) is a cubic polynomial in each of the subintervals,
(iii) f (x) and f (x) are continuous at each point.
Since f(x) is cubic in each of the subintervals f (x) shall be
linear.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1
where Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1),
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1
where Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1),
i = 1, 2, 3, ..., (n − 1)
and M0 = 0, Mn = 0, xi+1 − xi = h.
which gives n + 1 equations in n + 1 unknowns Mi(i = 0, 1, ..., n)
which can be solved. Substituting the value of Mi gives the
concerned cubic spline.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Obtain cubic spline for the following data:
x 0 1 2 3
y 2 -6 -8 2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. The following values of x and y are given:
x 1 2 3 4
y 1 2 5 11
Find the cubic splines and evaluate y(1.5) and y (3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find whether the following functions are cubic splines ?
1.
f(x) = 5x3 − 3x2, −1 ≤ x ≤ 0
= −5x3 − 3x2, 0 ≤ x ≤ 1
2.
f(x) = −2x3 − x2, −1 ≤ x ≤ 0
= 2x3 + 3x2, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0 = lim
x→0−
f (x)
therefore, the function f (x) is continuous on (−1, 1).
f (x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0 = lim
x→0−
f (x)
therefore, the function f (x) is continuous on (−1, 1).
f (x) = 30x−6, −1 ≤ x ≤ 0
= −30x − 6, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0 = lim
x→0−
f (x)
therefore, the function f (x) is continuous on (−1, 1).
f (x) = 30x−6, −1 ≤ x ≤ 0
= −30x − 6, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals

Interpolation with unequal interval

  • 1.
    Numerical Methods -Interpolation Unequal Intervals Dr. N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot (Guj.) niravbvyas@gmail.com Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 2.
    Interpolation To find thevalue of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 3.
    Interpolation To find thevalue of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 4.
    Interpolation To find thevalue of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 5.
    Interpolation To find thevalue of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 6.
    Interpolation To find thevalue of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 7.
    Interpolation To find thevalue of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn This polynomial Pn is called interpolation polynomial. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 8.
    Interpolation To find thevalue of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn This polynomial Pn is called interpolation polynomial. x0, x1, . . . , xn is called the nodes ( tabular points, pivotal points or arguments). Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 9.
    Interpolation with unequalintervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 10.
    Interpolation with unequalintervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x and y, where the values of x need not necessarily be equally spaced. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 11.
    Interpolation with unequalintervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x and y, where the values of x need not necessarily be equally spaced. It is required to find Pn(x), a polynomial of degree n such that y and Pn(x) agree at the tabulated points. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 12.
    Interpolation with unequalintervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x and y, where the values of x need not necessarily be equally spaced. It is required to find Pn(x), a polynomial of degree n such that y and Pn(x) agree at the tabulated points. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 13.
    Lagrange’s Interpolation This polynomialis given by the following formula: Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 14.
    Lagrange’s Interpolation This polynomialis given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 15.
    Lagrange’s Interpolation This polynomialis given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 + (x − x0)(x − x2) . . . (x − xn) (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 + . . . Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 16.
    Lagrange’s Interpolation This polynomialis given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 + (x − x0)(x − x2) . . . (x − xn) (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 + . . . + (x − x0)(x − x1) . . . (x − xn−1) (xn − x0)(xn − x1) . . . (xn − xn−1) yn Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 17.
    Lagrange’s Interpolation This polynomialis given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 + (x − x0)(x − x2) . . . (x − xn) (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 + . . . + (x − x0)(x − x1) . . . (x − xn−1) (xn − x0)(xn − x1) . . . (xn − xn−1) yn NOTE: The above formula can be used irrespective of whether the values x0, x1, . . . , xn are equally spaced or not. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 18.
    Lagrange’s Inverse Interpolation Inthe Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 19.
    Lagrange’s Inverse Interpolation Inthe Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 20.
    Lagrange’s Inverse Interpolation Inthe Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 21.
    Lagrange’s Inverse Interpolation Inthe Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 + (y − y0)(y − y2) . . . (y − yn) (y1 − y0)(y1 − y2) . . . (y1 − yn) x1 + . . . Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 22.
    Lagrange’s Inverse Interpolation Inthe Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 + (y − y0)(y − y2) . . . (y − yn) (y1 − y0)(y1 − y2) . . . (y1 − yn) x1 + . . . + (y − y0)(y − y1) . . . (y − yn−1) (yn − y0)(yn − y1) . . . (yn − yn−1) xn Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 23.
    Lagrange’s Inverse Interpolation Inthe Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 + (y − y0)(y − y2) . . . (y − yn) (y1 − y0)(y1 − y2) . . . (y1 − yn) x1 + . . . + (y − y0)(y − y1) . . . (y − yn−1) (yn − y0)(yn − y1) . . . (yn − yn−1) xn This relation is referred as Lagrange’s inverse interpolation formula. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 24.
    Example Ex. Given thetable of values: x 150 152 154 156 y = √ x 12.247 12.329 12.410 12.490 Evaluate √ 155 using Lagrange’s interpolation formula. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 25.
    Example Sol.: Here x0= 150, x1 = 152, x2 = 154 and x3 = 156 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 26.
    Example Sol.: Here x0= 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 27.
    Example Sol.: Here x0= 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 28.
    Example Sol.: Here x0= 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 29.
    Example Sol.: Here x0= 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 30.
    Example Sol.: Here x0= 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 + (x − x0)(x − x1)(x − x3) (x2 − x0)(x2 − x1)(x2 − x3) y2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 31.
    Example Sol.: Here x0= 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 + (x − x0)(x − x1)(x − x3) (x2 − x0)(x2 − x1)(x2 − x3) y2 + (x − x0)(x − x1)(x − x2) (x3 − x0)(x3 − x1)(x3 − x2) y3 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 32.
    Example Sol.: Here x0= 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 + (x − x0)(x − x1)(x − x3) (x2 − x0)(x2 − x1)(x2 − x3) y2 + (x − x0)(x − x1)(x − x2) (x3 − x0)(x3 − x1)(x3 − x2) y3 for x = 155 ∴ f(155) = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 33.
    Example Ex. Compute f(0.4)for the table below by the Lagrange’s interpolation: x 0.3 0.5 0.6 f(x) 0.61 0.69 0.72 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 34.
    Example Ex. Using Lagrange’sformula, find the form of f(x) for the following data: x 0 1 2 5 f(x) 2 3 12 147 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 35.
    Example Ex. Using Lagrange’sformula, find x for y = 7 for the following data: x 1 3 4 y 4 12 19 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 36.
    Example Ex. Using Lagrange’sformula, express the function 3x2 + x + 1 (x − 1)(x − 2)(x − 3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 37.
    Example Sol.: Let usevaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 38.
    Example Sol.: Let usevaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 39.
    Example Sol.: Let usevaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 40.
    Example Sol.: Let usevaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 41.
    Example Sol.: Let usevaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 42.
    Example Sol.: Let usevaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 + (x − x0)(x − x1) (x2 − x0)(x2 − x1) y2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 43.
    Example Sol.: Let usevaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 + (x − x0)(x − x1) (x2 − x0)(x2 − x1) y2 substituting above values, we get y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 44.
    Example Sol.: Let usevaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 + (x − x0)(x − x1) (x2 − x0)(x2 − x1) y2 substituting above values, we get y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 45.
    Example Thus 3x2 + x+ 1 (x − 1)(x − 2)(x − 3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 46.
    Example Thus 3x2 + x+ 1 (x − 1)(x − 2)(x − 3) = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2) (x − 1)(x − 2)(x − 3) = 2.5 (x − 1) - 15 (x − 2) + 15.5 (x − 3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 47.
    Error in Interpolation Errorin Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 48.
    Error in Interpolation Errorin Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as E(f, x) = f(x) − Pn(x) = (x − x0)(x − x1) . . . (x − xn) (n + 1)! f(n+1)(ξ) where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 49.
    Error in Interpolation Errorin Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as E(f, x) = f(x) − Pn(x) = (x − x0)(x − x1) . . . (x − xn) (n + 1)! f(n+1)(ξ) where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x) since, ξ is an unknown, it is difficult to find the value of error. However, we can find a bound of the error. The bound of the error is obtained as Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 50.
    Error in Interpolation Errorin Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as E(f, x) = f(x) − Pn(x) = (x − x0)(x − x1) . . . (x − xn) (n + 1)! f(n+1)(ξ) where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x) since, ξ is an unknown, it is difficult to find the value of error. However, we can find a bound of the error. The bound of the error is obtained as |E(f, x)| ≤ |(x − x0)(x − x1) . . . (x − xn)| (n + 1)! max a≤ξ≤b |f(n+1)(ξ)| Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 51.
    Example Ex. Using thedata sin(0.1) = 0.09983 and sin(0.2) = 0.19867, find an approximate value of sin(0.15) by Lagrange interpolation. Obtain a bound on the error at x = 0.15. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 52.
    Lagrange’s Interpolation Disadvantages: In practice,we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 53.
    Lagrange’s Interpolation Disadvantages: In practice,we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. To increase the degree the addition of another interpolation point leads to re-computation. i.e. no previous work is useful. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 54.
    Lagrange’s Interpolation Disadvantages: In practice,we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. To increase the degree the addition of another interpolation point leads to re-computation. i.e. no previous work is useful. E.g: In calculating Pk(x), no obvious advantage can be taken of the fact that one already has calculated Pk−1(x). Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 55.
    Lagrange’s Interpolation Disadvantages: In practice,we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. To increase the degree the addition of another interpolation point leads to re-computation. i.e. no previous work is useful. E.g: In calculating Pk(x), no obvious advantage can be taken of the fact that one already has calculated Pk−1(x). That means we need to calculate entirely new polynomial. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 56.
    Divided Difference Let f(x0),f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 57.
    Divided Difference Let f(x0),f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Then the first divided difference of f for the arguments x0, x1, . . . , xn are defined by , Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 58.
    Divided Difference Let f(x0),f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Then the first divided difference of f for the arguments x0, x1, . . . , xn are defined by , f(x0, x1) = f(x1) − f(x0) x1 − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 59.
    Divided Difference Let f(x0),f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Then the first divided difference of f for the arguments x0, x1, . . . , xn are defined by , f(x0, x1) = f(x1) − f(x0) x1 − x0 f(x1, x2) = f(x2) − f(x1) x2 − x1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 60.
    Divided Difference The seconddivided difference of f for three arguments x0, x1, x2 is defined by f(x0, x1, x2) = f(x1, x2) − f(x0, x1) x2 − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 61.
    Divided Difference The seconddivided difference of f for three arguments x0, x1, x2 is defined by f(x0, x1, x2) = f(x1, x2) − f(x0, x1) x2 − x0 and similarly the divided difference of order n is defined by f(x0, x1, . . . , xn) = f(x1, x2, . . . , xn) − f(x0, x1, . . . , xn−1) xn − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 62.
    Divided Difference Properties: The divideddifferences are symmetrical in all their arguments; that is, the value of any divided difference is independent of the order of the arguments. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 63.
    Divided Difference Properties: The divideddifferences are symmetrical in all their arguments; that is, the value of any divided difference is independent of the order of the arguments. The divided difference operator is linear. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 64.
    Divided Difference Properties: The divideddifferences are symmetrical in all their arguments; that is, the value of any divided difference is independent of the order of the arguments. The divided difference operator is linear. The nth order divided differences of a polynomial of degree n are constant, equal to the coefficient of xn. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 65.
    Newton’s Divided DifferenceInterpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 66.
    Newton’s Divided DifferenceInterpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 67.
    Newton’s Divided DifferenceInterpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. By the definition of divided difference, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 68.
    Newton’s Divided DifferenceInterpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. By the definition of divided difference, f(x, x0) = f(x) − f(x0) x − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 69.
    Newton’s Divided DifferenceInterpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. By the definition of divided difference, f(x, x0) = f(x) − f(x0) x − x0 ∴ f(x) = f(x0) + (x − x0)f(x, x0) − −(1) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 70.
    Newton’s Divided DifferenceInterpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 71.
    Newton’s Divided DifferenceInterpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 which yields f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 72.
    Newton’s Divided DifferenceInterpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 which yields f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2) Similarly f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 73.
    Newton’s Divided DifferenceInterpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 which yields f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2) Similarly f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3) and in general f(x, x0, ..., xn−1) = f(x0, x1, ..., xn) + (x − xn)f(x, x0, x1, ..., xn) − −(4) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 74.
    Newton’s Divided DifferenceInterpolation multiplying equation (2) by (x − x0) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 75.
    Newton’s Divided DifferenceInterpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 76.
    Newton’s Divided DifferenceInterpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, and finally the last term (4) by (x − x0) (x − x1) ... (x − xn−1) and Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 77.
    Newton’s Divided DifferenceInterpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, and finally the last term (4) by (x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4) we obtain Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 78.
    Newton’s Divided DifferenceInterpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, and finally the last term (4) by (x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4) we obtain f(x) = f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ... + (x − x0) (x − x1) ... (x − xn−1) f (x0, x1, ..., xn) This formula is called Newton’s divided difference formula. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 79.
    Newton’s Divided DifferenceInterpolation The divided difference upto third order x y 1stdiv.diff. 2nddiv.diff. 3rddiv.diff. x0 y0 [x0, x1] x1 y1 [x0, x1, x2] [x1, x2] [x0, x1, x2, x3] x2 y2 [x1, x2, x3] [x2, x3] x3 y3 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 80.
    Example Ex. Obtain thedivided difference table for the data: x -1 0 2 3 y -8 3 1 12 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 81.
    Example Sol. We havethe following divided difference table for the data: x y First d.d Second d.d Third d.d -1 -8 3 + 8 0 + 1 = 11 0 3 −1 − 11 2 + 1 = −4 1 − 3 2 − 0 = −1 4 + 4 3 + 1 = 2 2 1 11 + 1 3 − 0 = 4 12 − 1 3 − 2 = 11 3 12 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 82.
    Example Ex. Find f(x)as a polynomial in x for the following data by Newtons divided difference formula: x -4 -1 0 2 5 f(x) 1245 33 5 9 1335 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 83.
    Example Sol. We havethe following divided difference table for the data: x y 1st d.d 2nd d.d 3rd d.d 4th d.d -4 1245 −404 -1 33 94 −28 −14 0 5 10 3 2 13 2 9 88 442 5 1335 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 84.
    Example The Newtons divideddifference formula gives: Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 85.
    Example The Newtons divideddifference formula gives: f(x) = f(x0) + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 86.
    Example The Newtons divideddifference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 87.
    Example The Newtons divideddifference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 88.
    Example The Newtons divideddifference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 89.
    Example The Newtons divideddifference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 90.
    Example The Newtons divideddifference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] + (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 91.
    Example The Newtons divideddifference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] + (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4] = ... = 3x4 − 5x3 + 6x2 − 14x + 5 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 92.
    Example Ex. Find f(x)as a polynomial in x for the following data by Newtons divided difference formula: x -2 -1 0 1 3 4 f(x) 9 16 17 18 44 81 Hence, interpolate at x = 0.5 and x = 3.1. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 93.
    Example Sol. We formthe divided difference table for the given data. x f(x) 1st d.d 2nd d.d 3rd d.d 4th d.d −2 9 7 −1 16 −3 1 1 0 17 0 0 1 1 1 18 4 0 13 1 3 44 8 37 4 81 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 94.
    Example Since, the fourthorder differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 95.
    Example Since, the fourthorder differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 96.
    Example Since, the fourthorder differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 97.
    Example Since, the fourthorder differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 98.
    Example Since, the fourthorder differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] = ... = x3 + 17 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 99.
    Example Ex. Find themissing term in the following table: x 0 1 2 3 4 y 1 3 9 - 81 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 100.
    Example Sol. Divided differencetable: Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 101.
    Example Sol. Divided differencetable: By Newton’s divided difference formula f(x) = f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ... Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 102.
    Spline Interpolation Spline interpolationis a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline Consider the problem of interpolating between the data points (x0, y0), (x1, y1), . . . , (xn, yn) by means of spline fitting. Then the cubic spline f(x) is such that (i) f(x) is a linear polynomial outside the interval (x0, xn) (ii) f(x) is a cubic polynomial in each of the subintervals, (iii) f (x) and f (x) are continuous at each point. Since f(x) is cubic in each of the subintervals f (x) shall be linear. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 103.
    Spline Interpolation f(x) = (xi+1− x)3Mi 6h + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 104.
    Spline Interpolation f(x) = (xi+1− x)3Mi 6h + (x − xi)3Mi+1 6h Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 105.
    Spline Interpolation f(x) = (xi+1− x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 106.
    Spline Interpolation f(x) = (xi+1− x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 107.
    Spline Interpolation f(x) = (xi+1− x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 where Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 108.
    Spline Interpolation f(x) = (xi+1− x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 where Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2, 3, ..., (n − 1) and M0 = 0, Mn = 0, xi+1 − xi = h. which gives n + 1 equations in n + 1 unknowns Mi(i = 0, 1, ..., n) which can be solved. Substituting the value of Mi gives the concerned cubic spline. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 109.
    Example Ex. Obtain cubicspline for the following data: x 0 1 2 3 y 2 -6 -8 2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 110.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 111.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 112.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 113.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 114.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 115.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 116.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 117.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 118.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 119.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 120.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 121.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 122.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 123.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 124.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 125.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 126.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 127.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 128.
    Example Ex. The followingvalues of x and y are given: x 1 2 3 4 y 1 2 5 11 Find the cubic splines and evaluate y(1.5) and y (3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 129.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 130.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 131.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 132.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 133.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 134.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 135.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 136.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 137.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 138.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 139.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 140.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 141.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 142.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 143.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 144.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 145.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 146.
    Example Sol. Since pointsare equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 147.
    Example Ex. Find whetherthe following functions are cubic splines ? 1. f(x) = 5x3 − 3x2, −1 ≤ x ≤ 0 = −5x3 − 3x2, 0 ≤ x ≤ 1 2. f(x) = −2x3 − x2, −1 ≤ x ≤ 0 = 2x3 + 3x2, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 148.
    Example Sol. In boththe examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 149.
    Example Sol. In boththe examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 150.
    Example Sol. In boththe examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 151.
    Example Sol. In boththe examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 152.
    Example Sol. In boththe examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 153.
    Example Sol. In boththe examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 154.
    Example Sol. In boththe examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 = lim x→0− f (x) therefore, the function f (x) is continuous on (−1, 1). f (x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 155.
    Example Sol. In boththe examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 = lim x→0− f (x) therefore, the function f (x) is continuous on (−1, 1). f (x) = 30x−6, −1 ≤ x ≤ 0 = −30x − 6, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 156.
    Example Sol. In boththe examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 = lim x→0− f (x) therefore, the function f (x) is continuous on (−1, 1). f (x) = 30x−6, −1 ≤ x ≤ 0 = −30x − 6, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals