Tutorial on Matlab Basics
EECS 639
August 31, 2016
Matlab Basics
• To start Matlab: Select MATLAB on the menu (if
using Windows). Type “matlab” on the
command line (if using Linux).
Getting Help and
Looking Up Functions
• To get help on a function type “help function_name”,
e.g., “help plot”.
• To find a topic, type “lookfor topic”, e.g., “lookfor matrix”
Matlab’s Workspace
• who, whos – current workspace vars.
• save – save workspace vars to *.mat file.
• load – load variables from *.mat file.
• clear all – clear workspace vars.
• close all – close all figures
• clc – clear screen
• clf – clear figure
Basic Commands
• % used to denote a comment
• ; suppresses display of value (when
placed at end of a statement)
• ... continues the statement on next line
• eps machine epsilon
• inf infinity
• NaN not-a number, e.g., 0/0.
Numbers
• To change format of numbers:
format long, format short, etc.
See “help format”.
• Mathematical functions: sqrt(x), exp(x),
cos(x), sin(x), sum(x), etc.
• Operations: +, -, *, /
• Constants: pi, exp(1), etc.
Arrays and Matrices
• v = [-2 3 0 4.5 -1.5]; % length 5 row
vector.
• v = v’; % transposes v.
• v(1);% first element of v.
• v(2:4); % entries 2-4 of v.
• v([3,5]); % returns entries 3 & 5.
• v=[4:-1:2]; % same as v=[4 3 2];
• a=1:3; b=2:3; c=[a b];  c = [1 2 3 2 3];
Arrays and Matrices (2)
• x = linspace(-pi,pi,10); % creates 10
linearly-spaced elements from –pi to pi.
• logspace is similar.
• A = [1 2 3; 4 5 6]; % creates 2x3 matrix
• A(1,2) % the element in row 1, column 2.
• A(:,2) % the second column.
• A(2,:) % the second row.
Arrays and Matrices (3)
• A+B, A-B, 2*A, A*B% matrix addition,
matrix subtraction, scalar multiplication,
matrix multiplication
• A.*B% element-by-element mult.
• A’ % transpose of A (complex-
conjugate transpose)
• det(A) % determinant of A
Creating special matrices
• diag(v) % change a vector v to a
diagonal matrix.
• diag(A) % get diagonal of A.
• eye(n) % identity matrix of size n.
• zeros(m,n) % m-by-n zero matrix.
• ones(m,n) % m*n matrix with all ones.
Logical Conditions
• ==, <, >, <=, >=, ~= (not equal), ~ (not)
• & (element-wise logical and), | (or)
• find(‘condition’) – Return indices of A’s
elements that satisfies the condition.
• Example: A = [7 6 5; 4 3 2];
find (‘A == 3’); --> returns 5.
Solving Linear Equations
• A = [1 2 3; 2 5 3; 1 0 8];
• b = [2; 1; 0];
• x = inv(A)*b; % solves Ax=b if A is invertible.
(Note: This is a BAD way to solve the
equations!!! It’s unstable and inefficient.)
• x = Ab; % solves Ax = b.
(Note: This way is better, but we’ll learn how to program
methods to solve Ax=b.)
Do NOT use either of these commands in your
codes!
More matrix/vector operations
• length(v) % determine length of vector.
• size(A) % determine size of matrix.
• rank(A) % determine rank of matrix.
• norm(A), norm(A,1), norm(A,inf)
% determine 2-norm, 1-norm,
and infinity-norm of A.
• norm(v) % compute vector 2-norm.
For loops
• x = 0;
for i=1:2:5 % start at 1, increment by 2
x = x+i; % end with 5.
end
This computes x = 0+1+3+5=9.
While loops
• x=7;
while (x > = 0)
x = x-2;
end;
This computes x = 7-2-2-2-2 = -1.
If statements
• if (x == 3)
disp(‘The value of x is 3.’);
elseif (x == 5)
disp(‘The value of x is 5.’);
else
disp(‘The value of x is not 3 or 5.’);
end;
Switch statement
• switch face
case {1}
disp(‘Rolled a 1’);
case {2}
disp(‘Rolled a 2’);
otherwise
disp(‘Rolled a number >= 3’);
end
• NOTE: Unlike C, ONLY the SWITCH statement between
the matching case and the next case, otherwise, or end are
executed. (So breaks are unnecessary.)
Break statements
• break – terminates execution of for and
while loops. For nested loops, it exits the
innermost loop only.
Vectorization
• Because Matlab is an interpreted
language, i.e., it is not compiled before
execution, loops run slowly.
• Vectorized code runs faster in Matlab.
• Example: x=[1 2 3];
for i=1:3 Vectorized:
x(i) = x(i)+5; VS. x = x+5;
end;
Graphics
• x = linspace(-1,1,10);
• y = sin(x);
• plot(x,y); % plots y vs. x.
• plot(x,y,’k-’); % plots a black line
of y vs. x.
• hold on; % put several plots in the same
figure window.
• figure; % open new figure window.
Graphics (2)
• subplot(m,n,1) % Makes an mxn array
for plots. Will place plot in 1st
position.
X
Here m = 2 and n = 3.
Graphics (3)
• plot3(x,y,z) % plot 2D function.
• mesh(x_ax,y_ax,z_mat) – surface plot.
• contour(z_mat) – contour plot of z.
• axis([xmin xmax ymin ymax]) – change
axes
• title(‘My title’); - add title to figure;
• xlabel, ylabel – label axes.
• legend – add key to figure.
Examples of Matlab Plots
Examples of Matlab Plots
Examples of Matlab Plots
File Input/Output
• fid = fopen(‘in.dat’,’rt’); % open text
file for reading.
• v = fscanf(fid,’%lg’,10); % read 10
doubles from the text file.
• fclose(fid); % close the file.
• help textread; % formatted read.
• help fprintf; % formatted write.
Example Data File
Sally Type1 12.34 45 Yes
Joe Type2 23.54 60 No
Bill Type1 34.90 12 No
Read Entire Dataset
fid = fopen(‘mydata.dat’, ‘r’); % open file
for reading.
% Read-in data from mydata.dat.
[names,types,x,y,answer] =
textread(fid,’%s%s%f%d%s’);
fclose(fid); % close file.
Read Partial Dataset
fid = fopen(‘mydata.dat’, ‘r’); % open file
for reading.
% Read-in first column of data from mydata.dat.
[names] = textread(fid,’%s %*s %*f %*d %*s’);
fclose(fid); % close file.
Read 1 Line of Data
fid = fopen(‘mydata.dat’, ‘r’); % open file
% for reading.
% Read-in one line of data corresponding
% to Joe’s entry.
[name,type,x,y,answer] =… textread(fid,’%s%s
%f%d%s’,1,…
’headerlines’,1);
fclose(fid); % close file.
Writing formatted data.
% open file for writing.
fid = fopen(‘out.txt’,’w’);
% Write out Joe’s info to file.
fprintf(fid,’%s %s %f %d… %s
n’,name,type,x,y,answer);
fclose(fid); % close the file.
Keeping a record
• To keep a record of your session, use the diary
command:
diary filename
x = 3
diary off
This will keep a diary called filename showing
the value of x (your work for this session).
Timing
• Use tic, toc to determine the running time
of an algorithm as follows:
tic
commands…
toc
This will give the elapsed time.
Scripts and Functions
• Two kinds of M-files:
- Scripts, which do not accept input
arguments or return output arguments.
They operate on data in the workspace.
- Functions, which can accept input
arguments and return output
arguments. Internal variables are
local to the function.
M-file functions
• function [area,circum] = circle(r)
% [area, circum] = circle(r) returns the
% area and circumference of a circle
% with radius r.
area = pi*r^2;
circum = 2*pi*r;
• Save function in circle.m.
M-file scripts
• r = 7;
[area,circum] = circle(r);
% call our circle function.
disp([‘The area of a circle having…
radius ‘ num2str(r) ‘ is ‘… num2str(area)]);
• Save the file as myscript.m.
Tutorial sources
• http://docplayer.net/15715694-Introduction
-to-matlab-basics-reference-from-azerniko
v-sergei-mesergei-tx-technion-ac-il.html
• Tutorial by Azernikov Sergei.
Interactive Example (1)
• Write a Matlab program to compute the
following sum
∑1/i2
, for i=1, 2, …, 10
two different ways:
1. 1/1+1/4+…+1/100
2. 1/100+1/81+…+1/1.
Solution
% Forward summation
forwardsum = 0;
for i=1:10
forwardsum = forwardsum+1/(i^2);
end;
% Backward summation
backwardsum = 0;
for i=10:-1:1
backwardsum = backwardsum+1/(i^2);
end;
Interactive Example (2)
• Write a Matlab function to multiply two
n-by-n matrices A and B. (Do not use
built-in functions.)
Solution
function [C] = matrix_multiply(A,B,n)
C = zeros(n,n);
for i=1:n
for j=1:n
for k=1:n
C(i,j) = C(i,j) + A(i,k)*B(k,j);
end;
end;
end;
Can this code be written so that it
runs faster?
Hint: Use vectorization.
Solution
• Script to use for testing:
n = 10;
A = rand(n,n);
B = rand(n,n);
C = matrix_multiply(A,B,n);

matlab tutorial with separate function description and handson learning

  • 1.
    Tutorial on MatlabBasics EECS 639 August 31, 2016
  • 2.
    Matlab Basics • Tostart Matlab: Select MATLAB on the menu (if using Windows). Type “matlab” on the command line (if using Linux).
  • 3.
    Getting Help and LookingUp Functions • To get help on a function type “help function_name”, e.g., “help plot”. • To find a topic, type “lookfor topic”, e.g., “lookfor matrix”
  • 4.
    Matlab’s Workspace • who,whos – current workspace vars. • save – save workspace vars to *.mat file. • load – load variables from *.mat file. • clear all – clear workspace vars. • close all – close all figures • clc – clear screen • clf – clear figure
  • 5.
    Basic Commands • %used to denote a comment • ; suppresses display of value (when placed at end of a statement) • ... continues the statement on next line • eps machine epsilon • inf infinity • NaN not-a number, e.g., 0/0.
  • 6.
    Numbers • To changeformat of numbers: format long, format short, etc. See “help format”. • Mathematical functions: sqrt(x), exp(x), cos(x), sin(x), sum(x), etc. • Operations: +, -, *, / • Constants: pi, exp(1), etc.
  • 7.
    Arrays and Matrices •v = [-2 3 0 4.5 -1.5]; % length 5 row vector. • v = v’; % transposes v. • v(1);% first element of v. • v(2:4); % entries 2-4 of v. • v([3,5]); % returns entries 3 & 5. • v=[4:-1:2]; % same as v=[4 3 2]; • a=1:3; b=2:3; c=[a b];  c = [1 2 3 2 3];
  • 8.
    Arrays and Matrices(2) • x = linspace(-pi,pi,10); % creates 10 linearly-spaced elements from –pi to pi. • logspace is similar. • A = [1 2 3; 4 5 6]; % creates 2x3 matrix • A(1,2) % the element in row 1, column 2. • A(:,2) % the second column. • A(2,:) % the second row.
  • 9.
    Arrays and Matrices(3) • A+B, A-B, 2*A, A*B% matrix addition, matrix subtraction, scalar multiplication, matrix multiplication • A.*B% element-by-element mult. • A’ % transpose of A (complex- conjugate transpose) • det(A) % determinant of A
  • 10.
    Creating special matrices •diag(v) % change a vector v to a diagonal matrix. • diag(A) % get diagonal of A. • eye(n) % identity matrix of size n. • zeros(m,n) % m-by-n zero matrix. • ones(m,n) % m*n matrix with all ones.
  • 11.
    Logical Conditions • ==,<, >, <=, >=, ~= (not equal), ~ (not) • & (element-wise logical and), | (or) • find(‘condition’) – Return indices of A’s elements that satisfies the condition. • Example: A = [7 6 5; 4 3 2]; find (‘A == 3’); --> returns 5.
  • 12.
    Solving Linear Equations •A = [1 2 3; 2 5 3; 1 0 8]; • b = [2; 1; 0]; • x = inv(A)*b; % solves Ax=b if A is invertible. (Note: This is a BAD way to solve the equations!!! It’s unstable and inefficient.) • x = Ab; % solves Ax = b. (Note: This way is better, but we’ll learn how to program methods to solve Ax=b.) Do NOT use either of these commands in your codes!
  • 13.
    More matrix/vector operations •length(v) % determine length of vector. • size(A) % determine size of matrix. • rank(A) % determine rank of matrix. • norm(A), norm(A,1), norm(A,inf) % determine 2-norm, 1-norm, and infinity-norm of A. • norm(v) % compute vector 2-norm.
  • 14.
    For loops • x= 0; for i=1:2:5 % start at 1, increment by 2 x = x+i; % end with 5. end This computes x = 0+1+3+5=9.
  • 15.
    While loops • x=7; while(x > = 0) x = x-2; end; This computes x = 7-2-2-2-2 = -1.
  • 16.
    If statements • if(x == 3) disp(‘The value of x is 3.’); elseif (x == 5) disp(‘The value of x is 5.’); else disp(‘The value of x is not 3 or 5.’); end;
  • 17.
    Switch statement • switchface case {1} disp(‘Rolled a 1’); case {2} disp(‘Rolled a 2’); otherwise disp(‘Rolled a number >= 3’); end • NOTE: Unlike C, ONLY the SWITCH statement between the matching case and the next case, otherwise, or end are executed. (So breaks are unnecessary.)
  • 18.
    Break statements • break– terminates execution of for and while loops. For nested loops, it exits the innermost loop only.
  • 19.
    Vectorization • Because Matlabis an interpreted language, i.e., it is not compiled before execution, loops run slowly. • Vectorized code runs faster in Matlab. • Example: x=[1 2 3]; for i=1:3 Vectorized: x(i) = x(i)+5; VS. x = x+5; end;
  • 20.
    Graphics • x =linspace(-1,1,10); • y = sin(x); • plot(x,y); % plots y vs. x. • plot(x,y,’k-’); % plots a black line of y vs. x. • hold on; % put several plots in the same figure window. • figure; % open new figure window.
  • 21.
    Graphics (2) • subplot(m,n,1)% Makes an mxn array for plots. Will place plot in 1st position. X Here m = 2 and n = 3.
  • 22.
    Graphics (3) • plot3(x,y,z)% plot 2D function. • mesh(x_ax,y_ax,z_mat) – surface plot. • contour(z_mat) – contour plot of z. • axis([xmin xmax ymin ymax]) – change axes • title(‘My title’); - add title to figure; • xlabel, ylabel – label axes. • legend – add key to figure.
  • 23.
  • 24.
  • 25.
  • 26.
    File Input/Output • fid= fopen(‘in.dat’,’rt’); % open text file for reading. • v = fscanf(fid,’%lg’,10); % read 10 doubles from the text file. • fclose(fid); % close the file. • help textread; % formatted read. • help fprintf; % formatted write.
  • 27.
    Example Data File SallyType1 12.34 45 Yes Joe Type2 23.54 60 No Bill Type1 34.90 12 No
  • 28.
    Read Entire Dataset fid= fopen(‘mydata.dat’, ‘r’); % open file for reading. % Read-in data from mydata.dat. [names,types,x,y,answer] = textread(fid,’%s%s%f%d%s’); fclose(fid); % close file.
  • 29.
    Read Partial Dataset fid= fopen(‘mydata.dat’, ‘r’); % open file for reading. % Read-in first column of data from mydata.dat. [names] = textread(fid,’%s %*s %*f %*d %*s’); fclose(fid); % close file.
  • 30.
    Read 1 Lineof Data fid = fopen(‘mydata.dat’, ‘r’); % open file % for reading. % Read-in one line of data corresponding % to Joe’s entry. [name,type,x,y,answer] =… textread(fid,’%s%s %f%d%s’,1,… ’headerlines’,1); fclose(fid); % close file.
  • 31.
    Writing formatted data. %open file for writing. fid = fopen(‘out.txt’,’w’); % Write out Joe’s info to file. fprintf(fid,’%s %s %f %d… %s n’,name,type,x,y,answer); fclose(fid); % close the file.
  • 32.
    Keeping a record •To keep a record of your session, use the diary command: diary filename x = 3 diary off This will keep a diary called filename showing the value of x (your work for this session).
  • 33.
    Timing • Use tic,toc to determine the running time of an algorithm as follows: tic commands… toc This will give the elapsed time.
  • 34.
    Scripts and Functions •Two kinds of M-files: - Scripts, which do not accept input arguments or return output arguments. They operate on data in the workspace. - Functions, which can accept input arguments and return output arguments. Internal variables are local to the function.
  • 35.
    M-file functions • function[area,circum] = circle(r) % [area, circum] = circle(r) returns the % area and circumference of a circle % with radius r. area = pi*r^2; circum = 2*pi*r; • Save function in circle.m.
  • 36.
    M-file scripts • r= 7; [area,circum] = circle(r); % call our circle function. disp([‘The area of a circle having… radius ‘ num2str(r) ‘ is ‘… num2str(area)]); • Save the file as myscript.m.
  • 37.
  • 38.
    Interactive Example (1) •Write a Matlab program to compute the following sum ∑1/i2 , for i=1, 2, …, 10 two different ways: 1. 1/1+1/4+…+1/100 2. 1/100+1/81+…+1/1.
  • 39.
    Solution % Forward summation forwardsum= 0; for i=1:10 forwardsum = forwardsum+1/(i^2); end; % Backward summation backwardsum = 0; for i=10:-1:1 backwardsum = backwardsum+1/(i^2); end;
  • 40.
    Interactive Example (2) •Write a Matlab function to multiply two n-by-n matrices A and B. (Do not use built-in functions.)
  • 41.
    Solution function [C] =matrix_multiply(A,B,n) C = zeros(n,n); for i=1:n for j=1:n for k=1:n C(i,j) = C(i,j) + A(i,k)*B(k,j); end; end; end; Can this code be written so that it runs faster? Hint: Use vectorization.
  • 42.
    Solution • Script touse for testing: n = 10; A = rand(n,n); B = rand(n,n); C = matrix_multiply(A,B,n);