This document presents an improved item-based maxcover algorithm to protect sensitive patterns in large databases. The algorithm aims to minimize information loss when sanitizing databases to hide sensitive patterns. It works by identifying sensitive transactions containing restrictive patterns. It then sorts these transactions by degree and size and selects victim items to remove based on which items have the maximum cover across multiple patterns. This is done with only one scan of the source database. Experimental results on real datasets show the algorithm achieves zero hiding failure and low misses costs between 0-2.43% while keeping the sanitization rate between 40-68% and information loss below 1.1%.