1
Playing BBR with a userspace
network stack
Hajime Tazaki
IIJ
April, 2017, Linux netdev 2.1, Montreal, Canada
2 . 1
Linux Kernel Library
A library of Linux kernel code
to be reusable on various platforms
On userspace applications (can be FUSE, NUSE, BUSE)
As a core of Unikernel
With network simulation (under development)
Use cases
Operating system personality
Tiny guest operating system (single process)
Testing/Debugging
2 . 2
Motivation
MegaPipe [OSDI '12]
outperforms baseline Linux .. 582% (for short connections).
New API for applications (no existing applications benefit)
mTCP [NSDI '14]
improve... by a factor of 25 compared to the latest Linux TCP
implement with very limited TCP extensions
SandStorm [SIGCOMM '14]
our approach ..., demonstrating 2-10x improvements
specialized (no existing applications benefit)
Arrakis [OSDI '14]
improvements of 2-5x in latency and 9x in throughput .. to Linux
utilize simplified TCP/IP stack (lwip) (loose feature-rich extensions)
IX [OSDI '14]
improves throughput ... by 3.6x and reduces latency by 2x
utilize simplified TCP/IP stack (lwip) (loose feature-rich extensions)
2 . 3
Sigh
2 . 4
Motivation (cont'd)
1. Reuse feature-rich network stack, not re-implement or port
re-implement: give up (matured) decades' effort
port: hard to track the latest version
2. Reuse preserves various semantics
syntax level (command line)
API level
operation level (utility scripts)
3. Reasonable speed with generalized userspace network stack
x1 speed of the original
2 . 5
LKL outlooks
h/w independent (arch/lkl)
various platforms
Linux userspace
Windows userspace
FreeBSD user space
qemu/kvm (x86, arm) (unikernel)
uEFI (EFIDroid)
existing applications support
musl libc bind
cross build toolchain
EFIDroid: http://efidroid.org/
2 . 6
Demo
2 . 7
userspace network stack ?
Concerns about timing accuracy
how LKL behaves with BBR (requires higher timing accuracy) ?
Having network stack in userspace may complicate various
optimization
LKL at netdev1.2
https://youtu.be/xP9crHI0aAU?t=34m18s
3 . 1
Playing BBR with LKL
3 . 2
TCP BBR
Bottleneck Bandwidth and Round-trip propagation time
Control Tx rate
congestion not based on the packet loss
estimate MinRTT and MaxBW (on each ACK)
http://queue.acm.org/detail.cfm?id=3022184
3 . 3
TCP BBR (cont'd)
On Google's B4 WAN
(across North America, EU, Asia)
Migrated from cubic to bbr in 2016
x2 - x25 improvements
4 . 1
1st Benchmark (Oct. 2016)
netperf (TCP_STREAM, -K bbr/cubic)
2-node 10Gbps b2b link
tap+bridge (LKL)
direct ixgbe (native)
No loss, no bottleneck, close link
netperf(client) netserver
+------+ +--------+
| | | |
|sender+--------------+|receiver|
| |==============>| |
| | | |
+------+ +--------+
Linux-4.9-rc4 Linux-4.6
(host,LKL)
bbr/cubic cubic,fq_codel
(default)
4 . 2
1st Benchmark
netperf(client) netserver
+------+ +--------+
| | | |
|sender+--------------+|receiver|
| |==============>| |
| | | |
+------+ +--------+
Linux-4.9-rc4 Linux-4.6
(host,LKL)
bbr/cubic cubic,fq_codel
(default)
cc tput (Linux) tput (LKL)
bbr 9414.40 Mbps 456.43 Mbps
cubic 9411.46 Mbps 9385.28 Mbps
4 . 3
What ??
only BBR + LKL shows bad
Investigation
ack timestamp used by RTT measurement needed a precise time
event (clock)
providing high resolution timestamp improve the BBR performance
4 . 4
Change HZ (tick interval)
cc tput
(Linux,hz1000)
tput
(LKL,hz100)
tput
(LKL,hz1000)
bbr 9414.40 Mbps 456.43 Mbps 6965.05 Mbps
cubic 9411.46 Mbps 9385.28 Mbps 9393.35 Mbps
4 . 5
Timestamp on (ack) receipt
From
unsigned long long __weak sched_clock(void)
{
return (unsigned long long)(jiffies - INITIAL_JIFFIES)
* (NSEC_PER_SEC / HZ);
}
To
unsigned long long sched_clock(void)
{
return lkl_ops->time(); // i.e., clock_gettime()
}
cc tput (Linux) tput
(LKL,hz100)
tput (LKL
sched_clock,hz100)
bbr 9414.40
Mbps
456.43 Mbps 9409.98 Mbps
4 . 6
What happens if no sched_clock() ?
low throughput due to longer RTT measurement
A patch (by Neal Cardwell) to torelate lower in jiffies resolution
diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c
index 56fe736..b0f1426 100644
--- a/net/ipv4/tcp_input.c
+++ b/net/ipv4/tcp_input.c
@@ -3196,6 +3196,8 @@ static int tcp_clean_rtx_queue(struct sock *sk, int prior_
ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
}
sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
+ if (sack->rate->rtt_us == 0)
+ sack->rate->rtt_us = jiffies_to_usecs(1);
rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
ca_rtt_us);
diff --git a/net/ipv4/tcp_rate.c b/net/ipv4/tcp_rate.c
index 9be1581..981c48e 100644
--- a/net/ipv4/tcp_rate.c
+++ b/net/ipv4/tcp_rate.c
cc tput (Linux) tput (LKL,hz100) tput (LKL patched,hz100)
bbr 9414.40 Mbps 456.43 Mbps 9413.51 Mbps
https://groups.google.com/forum/#!topic/bbr-dev/sNwlUuIzzOk
5 . 1
2nd Benchmark
delayed, lossy network on 10Gbps
netem (middlebox)
netperf(client) netserver
+------+ +---------+ +--------+
| | | | | |
|sender+--------+middlebox+------+|receiver|
| |======= |======== |======>| |
| | | | | |
+------+ +---------+ +--------+
cc: BBR 1% pkt loss
fq-enabled 100ms delay
tcp_wmem=100M
cc tput (Linux) tput (LKL)
bbr 8602.40 Mbps 145.32 Mbps
cubic 632.63 Mbps 118.71 Mbps
5 . 2
Memory w/ TCP
configurable parameter for socket, TCP
sysctl -w net.ipv4.tcp_wmem="4096 16384 100000000"
delay and loss w/ TCP requires increased buffer
"LKL_SYSCTL=net.ipv4.tcp_wmem=4096 16384 100000000"
5 . 3
Memory w/ TCP (cont'd)
default memory size (of LKL): 64MiB
the size affects the sndbuf size
static bool tcp_should_expand_sndbuf(const struct sock *sk)
{
(snip)
/* If we are under global TCP memory pressure, do not expand. */
if (tcp_under_memory_pressure(sk))
return false;
(snip)
}
5 . 4
Timer relates
CONFIG_HIGH_RES_TIMERS enabled
fq scheduler uses
properly transmit packets with probed BW
fq configuration
instead of tc qdisc add fq
5 . 5
fq scheduler
Every fq_flow entry scheduled schedule a timer event
with high-resolution timer (in nsec)
static struct sk_buff *fq_dequeue()
=> void qdisc_watchdog_schedule_ns()
=> hrtimer_start()
5 . 6
How slow high-resolution timer ?
Delay = (nsec of expiration) - (nsec of scheduled)
5 . 7
Scheduler improvement
LKL's scheduler
outsourced based on thread impls (green/native)
minimum delay of timer interrupt (of LKL emulated)
>60 usec (green thread)
>20 usec (native thread)
5 . 8
Scheduler improvement
1. avoid system call (clock_nanosleep) when block
busy poll (watch clock instead) if sleep is < 10usec
60 usec => 20 usec
2. reuse green thread stack (avoid mmap per a timer irq)
20 usec => 3 usec
int sleep(u64 nsec) {
/* fast path */
while (1) {
if (nsec < 10*1000) {
clock_gettime(CLOCK_MONOTONIC, &now);
if (now - start > nsec)
return;
}
}
/* slow path */
return syscall(SYS_clock_nanosleep)
}
5 . 9
Timer delay improved ?
Before (top), After (bottom)
5 . 10
Results (TCP_STREAM, bbr/cubic)
netperf(client) netserver
+------+ +---------+ +--------+
| | | | | |
|sender+--------+middlebox+------+|receiver|
| |======= |======== |======>| |
| | | | | |
+------+ +---------+ +--------+
cc: BBR 1% pkt loss
fq-enabled 100ms delay
tcp_wmem=100M
6 . 1
Patched LKL
1. add sched_clock()
2. add sysctl configuration i/f (net.ipv4.tcp_wmem)
3. make system memory configurable (net.ipv4.tcp_mem)
4. enable CONFIG_HIGH_RES_TIMERS
5. add sch-fq configuration
6. scheduler hacked (uspace specific)
avoid syscall for short sleep
avoid memory allocation for each (thread) stack
7. (TSO, csum offload, by Jerry/Yuan from Google, netdev1.2)
6 . 2
Next possible steps
do profile while (lower LKL performance)
e.g., context switch of uspace threads
Various short-cuts
busy polling I/Os (packet, clock, etc)
replacing packet I/O (packet_mmap)
short packet performance (i.e., 64B)
practical workload (e.g., HTTP)
> 10Gbps link
6 . 3
on qemu/kvm ?
Based on rumprun unikernel
Performance under investigation
No scheduler issue (not
depending on syscall)
- http://www.linux.com/news/enterprise/cloud-
computing/751156-are-cloud-operating-systems-the-next-
big-thing-
Summary
Timing accuracy concern was right
performance obstacle in userspace execution
scheduler related
alleviated somehow
Timing severe features degraded from Linux
other options (unikernel)
The benefit of reusable code
6 . 46 . 5
References
LKL
Other related repos
https://github.com/lkl/linux
https://github.com/libos-nuse/lkl-linux
https://github.com/libos-nuse/frankenlibc
https://github.com/libos-nuse/rumprun
6 . 6
Backup
6 . 7
Alternatives
Full Virtualization
KVM
Para Virtualization
Xen
UML
Lightweight Virtualization
Container/namespaces
6 . 8
What is not LKL ?
not specific to a userspace network stack
Is a reusable library that we can use everywhere (in theory)
6 . 9
How others think about userspace ?
DPDK is not Linux (@ netdev 1.2)
The model of DPDK isn't compatible with Linux
break security model (protection never works)
XDP is Linux
6 . 10
userspace network stack (checklist)
Performance
Safety
Typos take the entire system down
Developer pervasiveness
Kernel reboot is disruptive
Traffic loss
ref: XDP Inside and Out
( )https://github.com/iovisor/bpf-docs/blob/master/XDP_Inside_and_Out.pdf
6 . 11
TCP BBR (cont'd)
BBR requires
packet pacing
precise RTT measurement
function onAck(packet)
rtt = now - packet.sendtime
update_min_filter(RTpropFilter, rtt)
delivered += packet.size
delivered_time = now
deliveryRate = (delivered - packet.delivered) /
(delivered_time - packet.delivered_time)
if (deliveryRate > BtlBwFilter.currentMax ||
! packet.app_limited)
update_max_filter(BtlBwFilter, deliveryRate)
if (app_limited_until > 0)
app_limited_until = app_limited_until - packet.size
http://queue.acm.org/detail.cfm?id=3022184
6 . 12
How timer works ?
1. schedule an event
2. add (hr)timer list queue (hrtimer_start())
3. (check expired timers in timer irq) (hrtimer_interrupt())
4. invoke callbacks (__run_hrtimer())
Timer delay improved ?
Before (top), After (bottom)
6 . 136 . 14
IPv6 ready
6 . 15
how timer interrupt works ?
native thread ver.
1. timer_settime(2)
instantiate a pthread
2. wakeup the thread
3. trigger a timer interrupt (of LKL)
update jiffies, invoke handlers
green thread ver.
1. instantiate a green thread
malloc/mmap, add to sched queue
2. schedule an event
clock_nanosleep(2) until next event)
or do something (goto above)
3. trigger a timer interrupt
6 . 16
TSO/Checksum offload
virtio based
guest-side: use Linux driver
TCP_STREAM (cubic, no delay)

Playing BBR with a userspace network stack

  • 1.
    1 Playing BBR witha userspace network stack Hajime Tazaki IIJ April, 2017, Linux netdev 2.1, Montreal, Canada
  • 2.
    2 . 1 LinuxKernel Library A library of Linux kernel code to be reusable on various platforms On userspace applications (can be FUSE, NUSE, BUSE) As a core of Unikernel With network simulation (under development) Use cases Operating system personality Tiny guest operating system (single process) Testing/Debugging
  • 3.
    2 . 2 Motivation MegaPipe[OSDI '12] outperforms baseline Linux .. 582% (for short connections). New API for applications (no existing applications benefit) mTCP [NSDI '14] improve... by a factor of 25 compared to the latest Linux TCP implement with very limited TCP extensions SandStorm [SIGCOMM '14] our approach ..., demonstrating 2-10x improvements specialized (no existing applications benefit) Arrakis [OSDI '14] improvements of 2-5x in latency and 9x in throughput .. to Linux utilize simplified TCP/IP stack (lwip) (loose feature-rich extensions) IX [OSDI '14] improves throughput ... by 3.6x and reduces latency by 2x utilize simplified TCP/IP stack (lwip) (loose feature-rich extensions)
  • 4.
  • 5.
    2 . 4 Motivation(cont'd) 1. Reuse feature-rich network stack, not re-implement or port re-implement: give up (matured) decades' effort port: hard to track the latest version 2. Reuse preserves various semantics syntax level (command line) API level operation level (utility scripts) 3. Reasonable speed with generalized userspace network stack x1 speed of the original
  • 6.
    2 . 5 LKLoutlooks h/w independent (arch/lkl) various platforms Linux userspace Windows userspace FreeBSD user space qemu/kvm (x86, arm) (unikernel) uEFI (EFIDroid) existing applications support musl libc bind cross build toolchain EFIDroid: http://efidroid.org/
  • 7.
  • 8.
    2 . 7 userspacenetwork stack ? Concerns about timing accuracy how LKL behaves with BBR (requires higher timing accuracy) ? Having network stack in userspace may complicate various optimization LKL at netdev1.2 https://youtu.be/xP9crHI0aAU?t=34m18s
  • 9.
    3 . 1 PlayingBBR with LKL
  • 10.
    3 . 2 TCPBBR Bottleneck Bandwidth and Round-trip propagation time Control Tx rate congestion not based on the packet loss estimate MinRTT and MaxBW (on each ACK) http://queue.acm.org/detail.cfm?id=3022184
  • 11.
    3 . 3 TCPBBR (cont'd) On Google's B4 WAN (across North America, EU, Asia) Migrated from cubic to bbr in 2016 x2 - x25 improvements
  • 12.
    4 . 1 1stBenchmark (Oct. 2016) netperf (TCP_STREAM, -K bbr/cubic) 2-node 10Gbps b2b link tap+bridge (LKL) direct ixgbe (native) No loss, no bottleneck, close link netperf(client) netserver +------+ +--------+ | | | | |sender+--------------+|receiver| | |==============>| | | | | | +------+ +--------+ Linux-4.9-rc4 Linux-4.6 (host,LKL) bbr/cubic cubic,fq_codel (default)
  • 13.
    4 . 2 1stBenchmark netperf(client) netserver +------+ +--------+ | | | | |sender+--------------+|receiver| | |==============>| | | | | | +------+ +--------+ Linux-4.9-rc4 Linux-4.6 (host,LKL) bbr/cubic cubic,fq_codel (default) cc tput (Linux) tput (LKL) bbr 9414.40 Mbps 456.43 Mbps cubic 9411.46 Mbps 9385.28 Mbps
  • 14.
    4 . 3 What?? only BBR + LKL shows bad Investigation ack timestamp used by RTT measurement needed a precise time event (clock) providing high resolution timestamp improve the BBR performance
  • 15.
    4 . 4 ChangeHZ (tick interval) cc tput (Linux,hz1000) tput (LKL,hz100) tput (LKL,hz1000) bbr 9414.40 Mbps 456.43 Mbps 6965.05 Mbps cubic 9411.46 Mbps 9385.28 Mbps 9393.35 Mbps
  • 16.
    4 . 5 Timestampon (ack) receipt From unsigned long long __weak sched_clock(void) { return (unsigned long long)(jiffies - INITIAL_JIFFIES) * (NSEC_PER_SEC / HZ); } To unsigned long long sched_clock(void) { return lkl_ops->time(); // i.e., clock_gettime() } cc tput (Linux) tput (LKL,hz100) tput (LKL sched_clock,hz100) bbr 9414.40 Mbps 456.43 Mbps 9409.98 Mbps
  • 17.
    4 . 6 Whathappens if no sched_clock() ? low throughput due to longer RTT measurement A patch (by Neal Cardwell) to torelate lower in jiffies resolution diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c index 56fe736..b0f1426 100644 --- a/net/ipv4/tcp_input.c +++ b/net/ipv4/tcp_input.c @@ -3196,6 +3196,8 @@ static int tcp_clean_rtx_queue(struct sock *sk, int prior_ ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt); } sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */ + if (sack->rate->rtt_us == 0) + sack->rate->rtt_us = jiffies_to_usecs(1); rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, ca_rtt_us); diff --git a/net/ipv4/tcp_rate.c b/net/ipv4/tcp_rate.c index 9be1581..981c48e 100644 --- a/net/ipv4/tcp_rate.c +++ b/net/ipv4/tcp_rate.c cc tput (Linux) tput (LKL,hz100) tput (LKL patched,hz100) bbr 9414.40 Mbps 456.43 Mbps 9413.51 Mbps https://groups.google.com/forum/#!topic/bbr-dev/sNwlUuIzzOk
  • 18.
    5 . 1 2ndBenchmark delayed, lossy network on 10Gbps netem (middlebox) netperf(client) netserver +------+ +---------+ +--------+ | | | | | | |sender+--------+middlebox+------+|receiver| | |======= |======== |======>| | | | | | | | +------+ +---------+ +--------+ cc: BBR 1% pkt loss fq-enabled 100ms delay tcp_wmem=100M cc tput (Linux) tput (LKL) bbr 8602.40 Mbps 145.32 Mbps cubic 632.63 Mbps 118.71 Mbps
  • 19.
    5 . 2 Memoryw/ TCP configurable parameter for socket, TCP sysctl -w net.ipv4.tcp_wmem="4096 16384 100000000" delay and loss w/ TCP requires increased buffer "LKL_SYSCTL=net.ipv4.tcp_wmem=4096 16384 100000000"
  • 20.
    5 . 3 Memoryw/ TCP (cont'd) default memory size (of LKL): 64MiB the size affects the sndbuf size static bool tcp_should_expand_sndbuf(const struct sock *sk) { (snip) /* If we are under global TCP memory pressure, do not expand. */ if (tcp_under_memory_pressure(sk)) return false; (snip) }
  • 21.
    5 . 4 Timerrelates CONFIG_HIGH_RES_TIMERS enabled fq scheduler uses properly transmit packets with probed BW fq configuration instead of tc qdisc add fq
  • 22.
    5 . 5 fqscheduler Every fq_flow entry scheduled schedule a timer event with high-resolution timer (in nsec) static struct sk_buff *fq_dequeue() => void qdisc_watchdog_schedule_ns() => hrtimer_start()
  • 23.
    5 . 6 Howslow high-resolution timer ? Delay = (nsec of expiration) - (nsec of scheduled)
  • 24.
    5 . 7 Schedulerimprovement LKL's scheduler outsourced based on thread impls (green/native) minimum delay of timer interrupt (of LKL emulated) >60 usec (green thread) >20 usec (native thread)
  • 25.
    5 . 8 Schedulerimprovement 1. avoid system call (clock_nanosleep) when block busy poll (watch clock instead) if sleep is < 10usec 60 usec => 20 usec 2. reuse green thread stack (avoid mmap per a timer irq) 20 usec => 3 usec int sleep(u64 nsec) { /* fast path */ while (1) { if (nsec < 10*1000) { clock_gettime(CLOCK_MONOTONIC, &now); if (now - start > nsec) return; } } /* slow path */ return syscall(SYS_clock_nanosleep) }
  • 26.
    5 . 9 Timerdelay improved ? Before (top), After (bottom)
  • 27.
    5 . 10 Results(TCP_STREAM, bbr/cubic) netperf(client) netserver +------+ +---------+ +--------+ | | | | | | |sender+--------+middlebox+------+|receiver| | |======= |======== |======>| | | | | | | | +------+ +---------+ +--------+ cc: BBR 1% pkt loss fq-enabled 100ms delay tcp_wmem=100M
  • 28.
    6 . 1 PatchedLKL 1. add sched_clock() 2. add sysctl configuration i/f (net.ipv4.tcp_wmem) 3. make system memory configurable (net.ipv4.tcp_mem) 4. enable CONFIG_HIGH_RES_TIMERS 5. add sch-fq configuration 6. scheduler hacked (uspace specific) avoid syscall for short sleep avoid memory allocation for each (thread) stack 7. (TSO, csum offload, by Jerry/Yuan from Google, netdev1.2)
  • 29.
    6 . 2 Nextpossible steps do profile while (lower LKL performance) e.g., context switch of uspace threads Various short-cuts busy polling I/Os (packet, clock, etc) replacing packet I/O (packet_mmap) short packet performance (i.e., 64B) practical workload (e.g., HTTP) > 10Gbps link
  • 30.
    6 . 3 onqemu/kvm ? Based on rumprun unikernel Performance under investigation No scheduler issue (not depending on syscall) - http://www.linux.com/news/enterprise/cloud- computing/751156-are-cloud-operating-systems-the-next- big-thing-
  • 31.
    Summary Timing accuracy concernwas right performance obstacle in userspace execution scheduler related alleviated somehow Timing severe features degraded from Linux other options (unikernel) The benefit of reusable code
  • 32.
    6 . 46. 5 References LKL Other related repos https://github.com/lkl/linux https://github.com/libos-nuse/lkl-linux https://github.com/libos-nuse/frankenlibc https://github.com/libos-nuse/rumprun
  • 33.
  • 34.
    6 . 7 Alternatives FullVirtualization KVM Para Virtualization Xen UML Lightweight Virtualization Container/namespaces
  • 35.
    6 . 8 Whatis not LKL ? not specific to a userspace network stack Is a reusable library that we can use everywhere (in theory)
  • 36.
    6 . 9 Howothers think about userspace ? DPDK is not Linux (@ netdev 1.2) The model of DPDK isn't compatible with Linux break security model (protection never works) XDP is Linux
  • 37.
    6 . 10 userspacenetwork stack (checklist) Performance Safety Typos take the entire system down Developer pervasiveness Kernel reboot is disruptive Traffic loss ref: XDP Inside and Out ( )https://github.com/iovisor/bpf-docs/blob/master/XDP_Inside_and_Out.pdf
  • 38.
    6 . 11 TCPBBR (cont'd) BBR requires packet pacing precise RTT measurement function onAck(packet) rtt = now - packet.sendtime update_min_filter(RTpropFilter, rtt) delivered += packet.size delivered_time = now deliveryRate = (delivered - packet.delivered) / (delivered_time - packet.delivered_time) if (deliveryRate > BtlBwFilter.currentMax || ! packet.app_limited) update_max_filter(BtlBwFilter, deliveryRate) if (app_limited_until > 0) app_limited_until = app_limited_until - packet.size http://queue.acm.org/detail.cfm?id=3022184
  • 39.
    6 . 12 Howtimer works ? 1. schedule an event 2. add (hr)timer list queue (hrtimer_start()) 3. (check expired timers in timer irq) (hrtimer_interrupt()) 4. invoke callbacks (__run_hrtimer())
  • 40.
    Timer delay improved? Before (top), After (bottom)
  • 41.
    6 . 136. 14 IPv6 ready
  • 42.
    6 . 15 howtimer interrupt works ? native thread ver. 1. timer_settime(2) instantiate a pthread 2. wakeup the thread 3. trigger a timer interrupt (of LKL) update jiffies, invoke handlers green thread ver. 1. instantiate a green thread malloc/mmap, add to sched queue 2. schedule an event clock_nanosleep(2) until next event) or do something (goto above) 3. trigger a timer interrupt
  • 43.
    6 . 16 TSO/Checksumoffload virtio based guest-side: use Linux driver TCP_STREAM (cubic, no delay)