Deep Dive into Building Streaming
Applications with Apache Pulsar
Tim Spann / Developer Advocate
#ossummit @PaaSDev
Deep Dive into Building
Streaming Applications with
Apache Pulsar
Tim Spann
Developer Advocate
● FLiP(N) Stack = Flink, Pulsar and NiFi Stack
● Streaming Systems/ Data Architect
● Experience:
○ 15+ years of experience with batch and streaming technologies
including Pulsar, Flink, Spark, NiFi, Spring, Java, Big Data, Cloud,
MXNet, Hadoop, Datalakes, IoT and more.
FLiP Stack Weekly
This week in Apache Flink, Apache Pulsar, Apache
NiFi, Apache Spark and open source friends.
https://bit.ly/32dAJft
#ossummit
Apache Pulsar is a Cloud-Native
Messaging and Event-Streaming Platform.
Why Apache Pulsar?
Unified
Messaging Platform
Guaranteed
Message Delivery Resiliency Infinite
Scalability
Building
Microservices
Asynchronous
Communication
Building Real Time
Applications
Highly Resilient
Tiered storage
7
Pulsar Benefits
● “Bookies”
● Stores messages and cursors
● Messages are grouped in
segments/ledgers
● A group of bookies form an
“ensemble” to store a ledger
● “Brokers”
● Handles message routing and
connections
● Stateless, but with caches
● Automatic load-balancing
● Topics are composed of
multiple segments
●
● Stores metadata for both
Pulsar and BookKeeper
● Service discovery
Store
Messages
Metadata &
Service Discovery
Metadata &
Service Discovery
Key Pulsar Concepts: Architecture
MetaData
Storage
Component Description
Value / data payload The data carried by the message. All Pulsar messages contain raw bytes, although
message data can also conform to data schemas.
Key Messages are optionally tagged with keys, used in partitioning and also is useful for
things like topic compaction.
Properties An optional key/value map of user-defined properties.
Producer name The name of the producer who produces the message. If you do not specify a producer
name, the default name is used. Message De-Duplication.
Sequence ID Each Pulsar message belongs to an ordered sequence on its topic. The sequence ID of
the message is its order in that sequence. Message De-Duplication.
Messages - the basic unit of Pulsar
Key Pulsar Concepts: Messaging vs Streaming
Message Queueing - Queueing
systems are ideal for work
queues that do not require
tasks to be performed in a
particular order.
Streaming - Streaming works
best in situations where the
order of messages is
important.
#ossummit
Connectivity
• Functions - Lightweight Stream
Processing (Java, Python, Go)
• Connectors - Sources & Sinks
(Cassandra, Kafka, …)
• Protocol Handlers - AoP (AMQP), KoP
(Kafka), MoP (MQTT)
• Processing Engines - Flink, Spark,
Presto/Trino via Pulsar SQL
• Data Offloaders - Tiered Storage - (S3)
hub.streamnative.io
#ossummit
Schema Registry
Schema Registry
schema-1 (value=Avro/Protobuf/JSON) schema-2 (value=Avro/Protobuf/JSON) schema-3
(value=Avro/Protobuf/JSON)
Schema
Data
ID
Local Cache
for Schemas
+
Schema
Data
ID +
Local Cache
for Schemas
Send schema-1
(value=Avro/Protobuf/JSON) data
serialized per schema ID
Send (register)
schema (if not in
local cache)
Read schema-1
(value=Avro/Protobuf/JSON) data
deserialized per schema ID
Get schema by ID (if
not in local cache)
Producers Consumers
#ossummit
Kafka On Pulsar (KoP)
#ossummit
MQTT On Pulsar (MoP)
#ossummit
AMQP On Pulsar (AoP)
#ossummit
Presto/Trino workers can read
segments directly from bookies (or
offloaded storage) in parallel.
Pulsar SQL
Bookie
1
Segment 1
Producer Consumer
Broker 1
Topic1-Part1
Broker 2
Topic1-Part2
Broker 3
Topic1-Part3
Segment
2
Segment
3
Segment
4
Segment X
Segment 1
Segment
1 Segment 1
Segment 3
Segment
3
Segment 3
Segment 2
Segment
2
Segment 2
Segment 4
Segment 4
Segment
4
Segment X
Segment X
Segment X
Bookie
2
Bookie
3
Query
Coordin
ator
SQL
Worker
SQL
Worker
SQL
Worker
SQL
Worker
Query
Topic
Metadata
● Buffer
● Batch
● Route
● Filter
● Aggregate
● Enrich
● Replicate
● Dedupe
● Decouple
● Distribute
#ossummit
Pulsar Functions
● Lightweight computation similar to AWS Lambda.
● Specifically designed to use Apache Pulsar as a
message bus.
● Function runtime can be located within Pulsar Broker.
A serverless event streaming framework
#ossummit
● Consume messages from one or
more Pulsar topics.
● Apply user-supplied processing
logic to each message.
● Publish the results of the
computation to another topic.
● Support multiple programming
languages (Java, Python, Go)
● Can leverage 3rd-party libraries
to support the execution of ML
models on the edge.
Pulsar Functions
#ossummit
Run a Local Standalone Bare Metal
wget
https://archive.apache.org/dist/pulsar/pulsar-2.10.1/apache-pulsar-2.10.1-
bin.tar.gz
tar xvfz apache-pulsar-2.10.1-bin.tar.gz
cd apache-pulsar-2.10.1
bin/pulsar standalone
(For Pulsar SQL Support)
bin/pulsar sql-worker start
https://pulsar.apache.org/docs/en/standalone/
#ossummit
<or> Run in Docker
docker run -it 
-p 6650:6650 
-p 8080:8080 
--mount source=pulsardata,target=/pulsar/data 
--mount source=pulsarconf,target=/pulsar/conf 
apachepulsar/pulsar:2.10.1 
bin/pulsar standalone
https://pulsar.apache.org/docs/en/standalone-docker/
#ossummit
Building Tenant, Namespace, Topics
bin/pulsar-admin tenants create conf
bin/pulsar-admin namespaces create conf/europe
bin/pulsar-admin tenants list
bin/pulsar-admin namespaces list conf
bin/pulsar-admin topics create persistent://conf/europe/first
bin/pulsar-admin topics list conf/europe
#ossummit
Install Python 3 Pulsar Client
pip3 install pulsar-client=='2.10.1[all]'
Includes AARCH64, ARM, M2, INTEL, …
For Python on Pulsar on Pi https://github.com/tspannhw/PulsarOnRaspberryPi
https://pulsar.apache.org/docs/en/client-libraries-python/
https://pypi.org/project/pulsar-client/2.10.0/#files
#ossummit
Building a Python 3 Producer
import pulsar
client = pulsar.Client('pulsar://localhost:6650')
producer
client.create_producer('persistent://conf/ete/first')
producer.send(('Simple Text Message').encode('utf-8'))
client.close()
#ossummit
Building a Python 3 Cloud Producer Oath
python3 prod.py -su pulsar+ssl://name1.name2.snio.cloud:6651 -t
persistent://public/default/pyth --auth-params
'{"issuer_url":"https://auth.streamnative.cloud", "private_key":"my.json",
"audience":"urn:sn:pulsar:name:myclustr"}'
from pulsar import Client, AuthenticationOauth2
parse = argparse.ArgumentParser(prog=prod.py')
parse.add_argument('-su', '--service-url', dest='service_url', type=str,
required=True)
args = parse.parse_args()
client = pulsar.Client(args.service_url,
authentication=AuthenticationOauth2(args.auth_params))
https://github.com/streamnative/examples/blob/master/cloud/python/OAuth2Producer.py
https://github.com/tspannhw/FLiP-Pi-BreakoutGarden
#ossummit
Example Avro Schema Usage
import pulsar
from pulsar.schema import *
from pulsar.schema import AvroSchema
class thermal(Record):
uuid = String()
client = pulsar.Client('pulsar://pulsar1:6650')
thermalschema = AvroSchema(thermal)
producer =
client.create_producer(topic='persistent://public/default/pi-thermal-avro',
schema=thermalschema,properties={"producer-name": "thrm" })
thermalRec = thermal()
thermalRec.uuid = "unique-name"
producer.send(thermalRec,partition_key=uniqueid)
https://github.com/tspannhw/FLiP-Pi-Thermal
#ossummit
Example Json Schema Usage
import pulsar
from pulsar.schema import *
from pulsar.schema import JsonSchema
class weather(Record):
uuid = String()
client = pulsar.Client('pulsar://pulsar1:6650')
wsc = JsonSchema(thermal)
producer =
client.create_producer(topic='persistent://public/default/wthr,schema=wsc,pro
perties={"producer-name": "wthr" })
weatherRec = weather()
weatherRec.uuid = "unique-name"
producer.send(weatherRec,partition_key=uniqueid)
https://github.com/tspannhw/FLiP-Pi-Weather
https://github.com/tspannhw/FLiP-PulsarDevPython101
#ossummit
Building a Python3 Consumer
import pulsar
client = pulsar.Client('pulsar://localhost:6650')
consumer =
client.subscribe('persistent://conf/ete/first',subscription_name='mine')
while True:
msg = consumer.receive()
print("Received message: '%s'" % msg.data())
consumer.acknowledge(msg)
client.close()
#ossummit
MQTT from Python
pip3 install paho-mqtt
import paho.mqtt.client as mqtt
client = mqtt.Client("rpi4iot")
row = { }
row['gasKO'] = str(readings)
json_string = json.dumps(row)
json_string = json_string.strip()
client.connect("pulsar-server.com", 1883, 180)
client.publish("persistent://public/default/mqtt-2",
payload=json_string,qos=0,retain=True)
https://www.slideshare.net/bunkertor/data-minutes-2-apache-pulsar-with-mqtt-for-edge-computing-lightning-2022
MQTT
#ossummit
Web Sockets from Python
pip3 install websocket-client
import websocket, base64, json
topic = 'ws://server:8080/ws/v2/producer/persistent/public/default/topic1'
ws = websocket.create_connection(topic)
message = "Hello Philly ETE Conference"
message_bytes = message.encode('ascii')
base64_bytes = base64.b64encode(message_bytes)
base64_message = base64_bytes.decode('ascii')
ws.send(json.dumps({'payload' : base64_message,'properties': {'device' :
'macbook'},'context' : 5}))
response = json.loads(ws.recv())
https://pulsar.apache.org/docs/en/client-libraries-websocket/
https://github.com/tspannhw/FLiP-IoT/blob/main/wspulsar.py
https://github.com/tspannhw/FLiP-IoT/blob/main/wsreader.py
Websockets
#ossummit
Kafka from Python
pip3 install kafka-python
from kafka import KafkaProducer
from kafka.errors import KafkaError
row = { }
row['gasKO'] = str(readings)
json_string = json.dumps(row)
json_string = json_string.strip()
producer = KafkaProducer(bootstrap_servers='pulsar1:9092',retries=3)
producer.send('topic-kafka-1', json.dumps(row).encode('utf-8'))
producer.flush()
https://github.com/streamnative/kop
https://docs.streamnative.io/platform/v1.0.0/concepts/kop-concepts
Apache Kafka
#ossummit
Deploy Python Functions
bin/pulsar-admin functions create --auto-ack true --py py/src/sentiment.py
--classname "sentiment.Chat" --inputs "persistent://public/default/chat"
--log-topic "persistent://public/default/logs" --name Chat --output
"persistent://public/default/chatresult"
https://github.com/tspannhw/pulsar-pychat-function
#ossummit
Pulsar IO Function in Python3
from pulsar import Function
import json
class Chat(Function):
def __init__(self):
pass
def process(self, input, context):
logger = context.get_logger()
msg_id = context.get_message_id()
fields = json.loads(input)
https://github.com/tspannhw/pulsar-pychat-function
#ossummit
Building a Golang Pulsar App
http://pulsar.apache.org/docs/en/client-libraries-go/
go get -u "github.com/apache/pulsar-client-go/pulsar"
import (
"log"
"time"
"github.com/apache/pulsar-client-go/pulsar"
)
func main() {
client, err := pulsar.NewClient(pulsar.ClientOptions{
URL: "pulsar://localhost:6650",OperationTimeout: 30 * time.Second,
ConnectionTimeout: 30 * time.Second,
})
if err != nil {
log.Fatalf("Could not instantiate Pulsar client: %v", err)
}
defer client.Close()
}
#ossummit
Typed Java Client
Producer<User> producer =
client.newProducer(Schema.AVRO(User.class)).create();
producer.newMessage()
.value(User.builder()
.userName("pulsar-user")
.userId(1L)
.build())
.send();
Consumer<User> consumer =
client.newConsumer(Schema.AVRO(User.class)).create();
User user = consumer.receive();
#ossummit
Pulsar Producer
import java.util.UUID;
import java.net.URL;
import org.apache.pulsar.client.api.Producer;
import org.apache.pulsar.client.api.ProducerBuilder;
import org.apache.pulsar.client.api.PulsarClient;
import org.apache.pulsar.client.api.MessageId;
import org.apache.pulsar.client.impl.auth.oauth2.AuthenticationFactoryOAuth2;
PulsarClient client = PulsarClient.builder()
.serviceUrl(serviceUrl)
.authentication(
AuthenticationFactoryOAuth2.clientCredentials(
new URL(issuerUrl), new URL(credentialsUrl.), audience))
.build();
#ossummit
Spring RabbitMQ/AMQP Producer
rabbitTemplate.convertAndSend(topicName,
DataUtility.serializeToJSON(observation));
#ossummit
Spring MQTT Producer
MqttMessage mqttMessage = new MqttMessage();
mqttMessage.setPayload(DataUtility.serialize(payload));
mqttMessage.setQos(1);
mqttMessage.setRetained(true);
mqttClient.publish(topicName, mqttMessage);
#ossummit
Spring Kafka Producer
ProducerRecord<String, String> producerRecord = new
ProducerRecord<>(topicName, uuidKey.toString(),
DataUtility.serializeToJSON(message));
kafkaTemplate.send(producerRecord);
#ossummit
Pulsar Simple Producer
String pulsarKey = UUID.randomUUID().toString();
String OS = System.getProperty("os.name").toLowerCase();
ProducerBuilder<byte[]> producerBuilder = client.newProducer().topic(topic)
.producerName("demo");
Producer<byte[]> producer = producerBuilder.create();
MessageId msgID = producer.newMessage().key(pulsarKey).value("msg".getBytes())
.property("device",OS).send();
producer.close();
client.close();
#ossummit
import java.util.function.Function;
public class MyFunction implements Function<String, String> {
public String apply(String input) {
return doBusinessLogic(input);
}
}
Your Code Here
Pulsar Function Java
#ossummit
import org.apache.pulsar.client.impl.schema.JSONSchema;
import org.apache.pulsar.functions.api.*;
public class AirQualityFunction implements Function<byte[], Void> {
@Override
public Void process(byte[] input, Context context) {
context.getLogger().debug("File:” + new String(input));
context.newOutputMessage(“topicname”,
JSONSchema.of(Observation.class))
.key(UUID.randomUUID().toString())
.property(“prop1”, “value1”)
.value(observation)
.send();
}
}
Your Code Here
Pulsar Function SDK
#ossummit
Setting Subscription Type Java
Consumer<byte[]> consumer = pulsarClient.newConsumer()
.topic(topic)
.subscriptionName(“subscriptionName")
.subscriptionType(SubscriptionType.Shared)
.subscribe();
#ossummit
Subscribing to a Topic and Setting Subscription Name
Java
Consumer<byte[]> consumer = pulsarClient.newConsumer()
.topic(topic)
.subscriptionName(“subscriptionName")
.subscribe();
#ossummit
Producing Object Events From Java
ProducerBuilder<Observation> producerBuilder =
pulsarClient.newProducer(JSONSchema.of(Observation.class))
.topic(topicName)
.producerName(producerName).sendTimeout(60,
TimeUnit.SECONDS);
Producer<Observation> producer = producerBuilder.create();
msgID = producer.newMessage()
.key(someUniqueKey)
.value(observation)
.send();
#ossummit
Monitoring and Metrics Check
curl http://pulsar1:8080/admin/v2/persistent/conf/europe/first/stats |
python3 -m json.tool
bin/pulsar-admin topics stats-internal persistent://conf/europe/first
curl http://pulsar1:8080/metrics/
bin/pulsar-admin topics stats-internal persistent://conf/europe/first
bin/pulsar-admin topics peek-messages --count 5 --subscription
ete-reader persistent://conf/europe/first
bin/pulsar-admin topics subscriptions persistent://conf/europe/first
#ossummit
Metrics: Broker
Broker metrics are exposed under "/metrics" at port 8080.
You can change the port by updating webServicePort to a different port
in the broker.conf configuration file.
All the metrics exposed by a broker are labeled with
cluster=${pulsar_cluster}.
The name of Pulsar cluster is the value of ${pulsar_cluster},
configured in the broker.conf file.
For more information: https://pulsar.apache.org/docs/en/reference-metrics/#broker
#ossummit
Metrics: Broker
These metrics are available for brokers:
● Namespace metrics
○ Replication metrics
● Topic metrics
○ Replication metrics
● ManagedLedgerCache metrics
● ManagedLedger metrics
● LoadBalancing metrics
○ BundleUnloading metrics
○ BundleSplit metrics
● Subscription metrics
● Consumer metrics
● ManagedLedger bookie client metrics
#ossummit
Cleanup
bin/pulsar-admin topics delete persistent://conf/europe/first
bin/pulsar-admin namespaces delete conf/europe
bin/pulsar-admin tenants delete conf
#ossummit
• Unified Messaging Platform
• AdTech
• Fraud Detection
• Connected Car
• IoT Analytics
• Microservices Development
Use Cases
#ossummit
Java for Pulsar
● https://github.com/tspannhw/airquality
● https://github.com/tspannhw/FLiPN-AirQuality-REST
● https://github.com/tspannhw/pulsar-airquality-function
● https://github.com/tspannhw/FLiPN-DEVNEXUS-2022
● https://github.com/tspannhw/FLiP-Py-ADS-B
● https://github.com/tspannhw/pulsar-adsb-function
● https://github.com/tspannhw/airquality-amqp-consumer
● https://github.com/tspannhw/airquality-mqtt-consumer
● https://github.com/tspannhw/airquality-consumer
● https://github.com/tspannhw/airquality-kafka-consumer
#ossummit
Python For Pulsar on Pi
● https://github.com/tspannhw/FLiP-Pi-BreakoutGarden
● https://github.com/tspannhw/FLiP-Pi-Thermal
● https://github.com/tspannhw/FLiP-Pi-Weather
● https://github.com/tspannhw/FLiP-RP400
● https://github.com/tspannhw/FLiP-Py-Pi-GasThermal
● https://github.com/tspannhw/FLiP-PY-FakeDataPulsar
● https://github.com/tspannhw/FLiP-Py-Pi-EnviroPlus
● https://github.com/tspannhw/PythonPulsarExamples
● https://github.com/tspannhw/pulsar-pychat-function
● https://github.com/tspannhw/FLiP-PulsarDevPython101
● https://github.com/tspannhw/airquality
OSS EU:  Deep Dive into Building Streaming Applications with Apache Pulsar

OSS EU: Deep Dive into Building Streaming Applications with Apache Pulsar

  • 1.
    Deep Dive intoBuilding Streaming Applications with Apache Pulsar Tim Spann / Developer Advocate #ossummit @PaaSDev
  • 2.
    Deep Dive intoBuilding Streaming Applications with Apache Pulsar
  • 3.
    Tim Spann Developer Advocate ●FLiP(N) Stack = Flink, Pulsar and NiFi Stack ● Streaming Systems/ Data Architect ● Experience: ○ 15+ years of experience with batch and streaming technologies including Pulsar, Flink, Spark, NiFi, Spring, Java, Big Data, Cloud, MXNet, Hadoop, Datalakes, IoT and more.
  • 4.
    FLiP Stack Weekly Thisweek in Apache Flink, Apache Pulsar, Apache NiFi, Apache Spark and open source friends. https://bit.ly/32dAJft
  • 5.
    #ossummit Apache Pulsar isa Cloud-Native Messaging and Event-Streaming Platform.
  • 6.
    Why Apache Pulsar? Unified MessagingPlatform Guaranteed Message Delivery Resiliency Infinite Scalability
  • 7.
  • 8.
    ● “Bookies” ● Storesmessages and cursors ● Messages are grouped in segments/ledgers ● A group of bookies form an “ensemble” to store a ledger ● “Brokers” ● Handles message routing and connections ● Stateless, but with caches ● Automatic load-balancing ● Topics are composed of multiple segments ● ● Stores metadata for both Pulsar and BookKeeper ● Service discovery Store Messages Metadata & Service Discovery Metadata & Service Discovery Key Pulsar Concepts: Architecture MetaData Storage
  • 9.
    Component Description Value /data payload The data carried by the message. All Pulsar messages contain raw bytes, although message data can also conform to data schemas. Key Messages are optionally tagged with keys, used in partitioning and also is useful for things like topic compaction. Properties An optional key/value map of user-defined properties. Producer name The name of the producer who produces the message. If you do not specify a producer name, the default name is used. Message De-Duplication. Sequence ID Each Pulsar message belongs to an ordered sequence on its topic. The sequence ID of the message is its order in that sequence. Message De-Duplication. Messages - the basic unit of Pulsar
  • 10.
    Key Pulsar Concepts:Messaging vs Streaming Message Queueing - Queueing systems are ideal for work queues that do not require tasks to be performed in a particular order. Streaming - Streaming works best in situations where the order of messages is important.
  • 11.
    #ossummit Connectivity • Functions -Lightweight Stream Processing (Java, Python, Go) • Connectors - Sources & Sinks (Cassandra, Kafka, …) • Protocol Handlers - AoP (AMQP), KoP (Kafka), MoP (MQTT) • Processing Engines - Flink, Spark, Presto/Trino via Pulsar SQL • Data Offloaders - Tiered Storage - (S3) hub.streamnative.io
  • 12.
    #ossummit Schema Registry Schema Registry schema-1(value=Avro/Protobuf/JSON) schema-2 (value=Avro/Protobuf/JSON) schema-3 (value=Avro/Protobuf/JSON) Schema Data ID Local Cache for Schemas + Schema Data ID + Local Cache for Schemas Send schema-1 (value=Avro/Protobuf/JSON) data serialized per schema ID Send (register) schema (if not in local cache) Read schema-1 (value=Avro/Protobuf/JSON) data deserialized per schema ID Get schema by ID (if not in local cache) Producers Consumers
  • 13.
  • 14.
  • 15.
  • 16.
    #ossummit Presto/Trino workers canread segments directly from bookies (or offloaded storage) in parallel. Pulsar SQL Bookie 1 Segment 1 Producer Consumer Broker 1 Topic1-Part1 Broker 2 Topic1-Part2 Broker 3 Topic1-Part3 Segment 2 Segment 3 Segment 4 Segment X Segment 1 Segment 1 Segment 1 Segment 3 Segment 3 Segment 3 Segment 2 Segment 2 Segment 2 Segment 4 Segment 4 Segment 4 Segment X Segment X Segment X Bookie 2 Bookie 3 Query Coordin ator SQL Worker SQL Worker SQL Worker SQL Worker Query Topic Metadata
  • 19.
    ● Buffer ● Batch ●Route ● Filter ● Aggregate ● Enrich ● Replicate ● Dedupe ● Decouple ● Distribute
  • 20.
    #ossummit Pulsar Functions ● Lightweightcomputation similar to AWS Lambda. ● Specifically designed to use Apache Pulsar as a message bus. ● Function runtime can be located within Pulsar Broker. A serverless event streaming framework
  • 21.
    #ossummit ● Consume messagesfrom one or more Pulsar topics. ● Apply user-supplied processing logic to each message. ● Publish the results of the computation to another topic. ● Support multiple programming languages (Java, Python, Go) ● Can leverage 3rd-party libraries to support the execution of ML models on the edge. Pulsar Functions
  • 22.
    #ossummit Run a LocalStandalone Bare Metal wget https://archive.apache.org/dist/pulsar/pulsar-2.10.1/apache-pulsar-2.10.1- bin.tar.gz tar xvfz apache-pulsar-2.10.1-bin.tar.gz cd apache-pulsar-2.10.1 bin/pulsar standalone (For Pulsar SQL Support) bin/pulsar sql-worker start https://pulsar.apache.org/docs/en/standalone/
  • 23.
    #ossummit <or> Run inDocker docker run -it -p 6650:6650 -p 8080:8080 --mount source=pulsardata,target=/pulsar/data --mount source=pulsarconf,target=/pulsar/conf apachepulsar/pulsar:2.10.1 bin/pulsar standalone https://pulsar.apache.org/docs/en/standalone-docker/
  • 24.
    #ossummit Building Tenant, Namespace,Topics bin/pulsar-admin tenants create conf bin/pulsar-admin namespaces create conf/europe bin/pulsar-admin tenants list bin/pulsar-admin namespaces list conf bin/pulsar-admin topics create persistent://conf/europe/first bin/pulsar-admin topics list conf/europe
  • 25.
    #ossummit Install Python 3Pulsar Client pip3 install pulsar-client=='2.10.1[all]' Includes AARCH64, ARM, M2, INTEL, … For Python on Pulsar on Pi https://github.com/tspannhw/PulsarOnRaspberryPi https://pulsar.apache.org/docs/en/client-libraries-python/ https://pypi.org/project/pulsar-client/2.10.0/#files
  • 26.
    #ossummit Building a Python3 Producer import pulsar client = pulsar.Client('pulsar://localhost:6650') producer client.create_producer('persistent://conf/ete/first') producer.send(('Simple Text Message').encode('utf-8')) client.close()
  • 27.
    #ossummit Building a Python3 Cloud Producer Oath python3 prod.py -su pulsar+ssl://name1.name2.snio.cloud:6651 -t persistent://public/default/pyth --auth-params '{"issuer_url":"https://auth.streamnative.cloud", "private_key":"my.json", "audience":"urn:sn:pulsar:name:myclustr"}' from pulsar import Client, AuthenticationOauth2 parse = argparse.ArgumentParser(prog=prod.py') parse.add_argument('-su', '--service-url', dest='service_url', type=str, required=True) args = parse.parse_args() client = pulsar.Client(args.service_url, authentication=AuthenticationOauth2(args.auth_params)) https://github.com/streamnative/examples/blob/master/cloud/python/OAuth2Producer.py https://github.com/tspannhw/FLiP-Pi-BreakoutGarden
  • 28.
    #ossummit Example Avro SchemaUsage import pulsar from pulsar.schema import * from pulsar.schema import AvroSchema class thermal(Record): uuid = String() client = pulsar.Client('pulsar://pulsar1:6650') thermalschema = AvroSchema(thermal) producer = client.create_producer(topic='persistent://public/default/pi-thermal-avro', schema=thermalschema,properties={"producer-name": "thrm" }) thermalRec = thermal() thermalRec.uuid = "unique-name" producer.send(thermalRec,partition_key=uniqueid) https://github.com/tspannhw/FLiP-Pi-Thermal
  • 29.
    #ossummit Example Json SchemaUsage import pulsar from pulsar.schema import * from pulsar.schema import JsonSchema class weather(Record): uuid = String() client = pulsar.Client('pulsar://pulsar1:6650') wsc = JsonSchema(thermal) producer = client.create_producer(topic='persistent://public/default/wthr,schema=wsc,pro perties={"producer-name": "wthr" }) weatherRec = weather() weatherRec.uuid = "unique-name" producer.send(weatherRec,partition_key=uniqueid) https://github.com/tspannhw/FLiP-Pi-Weather https://github.com/tspannhw/FLiP-PulsarDevPython101
  • 30.
    #ossummit Building a Python3Consumer import pulsar client = pulsar.Client('pulsar://localhost:6650') consumer = client.subscribe('persistent://conf/ete/first',subscription_name='mine') while True: msg = consumer.receive() print("Received message: '%s'" % msg.data()) consumer.acknowledge(msg) client.close()
  • 31.
    #ossummit MQTT from Python pip3install paho-mqtt import paho.mqtt.client as mqtt client = mqtt.Client("rpi4iot") row = { } row['gasKO'] = str(readings) json_string = json.dumps(row) json_string = json_string.strip() client.connect("pulsar-server.com", 1883, 180) client.publish("persistent://public/default/mqtt-2", payload=json_string,qos=0,retain=True) https://www.slideshare.net/bunkertor/data-minutes-2-apache-pulsar-with-mqtt-for-edge-computing-lightning-2022 MQTT
  • 32.
    #ossummit Web Sockets fromPython pip3 install websocket-client import websocket, base64, json topic = 'ws://server:8080/ws/v2/producer/persistent/public/default/topic1' ws = websocket.create_connection(topic) message = "Hello Philly ETE Conference" message_bytes = message.encode('ascii') base64_bytes = base64.b64encode(message_bytes) base64_message = base64_bytes.decode('ascii') ws.send(json.dumps({'payload' : base64_message,'properties': {'device' : 'macbook'},'context' : 5})) response = json.loads(ws.recv()) https://pulsar.apache.org/docs/en/client-libraries-websocket/ https://github.com/tspannhw/FLiP-IoT/blob/main/wspulsar.py https://github.com/tspannhw/FLiP-IoT/blob/main/wsreader.py Websockets
  • 33.
    #ossummit Kafka from Python pip3install kafka-python from kafka import KafkaProducer from kafka.errors import KafkaError row = { } row['gasKO'] = str(readings) json_string = json.dumps(row) json_string = json_string.strip() producer = KafkaProducer(bootstrap_servers='pulsar1:9092',retries=3) producer.send('topic-kafka-1', json.dumps(row).encode('utf-8')) producer.flush() https://github.com/streamnative/kop https://docs.streamnative.io/platform/v1.0.0/concepts/kop-concepts Apache Kafka
  • 34.
    #ossummit Deploy Python Functions bin/pulsar-adminfunctions create --auto-ack true --py py/src/sentiment.py --classname "sentiment.Chat" --inputs "persistent://public/default/chat" --log-topic "persistent://public/default/logs" --name Chat --output "persistent://public/default/chatresult" https://github.com/tspannhw/pulsar-pychat-function
  • 35.
    #ossummit Pulsar IO Functionin Python3 from pulsar import Function import json class Chat(Function): def __init__(self): pass def process(self, input, context): logger = context.get_logger() msg_id = context.get_message_id() fields = json.loads(input) https://github.com/tspannhw/pulsar-pychat-function
  • 36.
    #ossummit Building a GolangPulsar App http://pulsar.apache.org/docs/en/client-libraries-go/ go get -u "github.com/apache/pulsar-client-go/pulsar" import ( "log" "time" "github.com/apache/pulsar-client-go/pulsar" ) func main() { client, err := pulsar.NewClient(pulsar.ClientOptions{ URL: "pulsar://localhost:6650",OperationTimeout: 30 * time.Second, ConnectionTimeout: 30 * time.Second, }) if err != nil { log.Fatalf("Could not instantiate Pulsar client: %v", err) } defer client.Close() }
  • 37.
    #ossummit Typed Java Client Producer<User>producer = client.newProducer(Schema.AVRO(User.class)).create(); producer.newMessage() .value(User.builder() .userName("pulsar-user") .userId(1L) .build()) .send(); Consumer<User> consumer = client.newConsumer(Schema.AVRO(User.class)).create(); User user = consumer.receive();
  • 38.
    #ossummit Pulsar Producer import java.util.UUID; importjava.net.URL; import org.apache.pulsar.client.api.Producer; import org.apache.pulsar.client.api.ProducerBuilder; import org.apache.pulsar.client.api.PulsarClient; import org.apache.pulsar.client.api.MessageId; import org.apache.pulsar.client.impl.auth.oauth2.AuthenticationFactoryOAuth2; PulsarClient client = PulsarClient.builder() .serviceUrl(serviceUrl) .authentication( AuthenticationFactoryOAuth2.clientCredentials( new URL(issuerUrl), new URL(credentialsUrl.), audience)) .build();
  • 39.
  • 40.
    #ossummit Spring MQTT Producer MqttMessagemqttMessage = new MqttMessage(); mqttMessage.setPayload(DataUtility.serialize(payload)); mqttMessage.setQos(1); mqttMessage.setRetained(true); mqttClient.publish(topicName, mqttMessage);
  • 41.
    #ossummit Spring Kafka Producer ProducerRecord<String,String> producerRecord = new ProducerRecord<>(topicName, uuidKey.toString(), DataUtility.serializeToJSON(message)); kafkaTemplate.send(producerRecord);
  • 42.
    #ossummit Pulsar Simple Producer StringpulsarKey = UUID.randomUUID().toString(); String OS = System.getProperty("os.name").toLowerCase(); ProducerBuilder<byte[]> producerBuilder = client.newProducer().topic(topic) .producerName("demo"); Producer<byte[]> producer = producerBuilder.create(); MessageId msgID = producer.newMessage().key(pulsarKey).value("msg".getBytes()) .property("device",OS).send(); producer.close(); client.close();
  • 43.
    #ossummit import java.util.function.Function; public classMyFunction implements Function<String, String> { public String apply(String input) { return doBusinessLogic(input); } } Your Code Here Pulsar Function Java
  • 44.
    #ossummit import org.apache.pulsar.client.impl.schema.JSONSchema; import org.apache.pulsar.functions.api.*; publicclass AirQualityFunction implements Function<byte[], Void> { @Override public Void process(byte[] input, Context context) { context.getLogger().debug("File:” + new String(input)); context.newOutputMessage(“topicname”, JSONSchema.of(Observation.class)) .key(UUID.randomUUID().toString()) .property(“prop1”, “value1”) .value(observation) .send(); } } Your Code Here Pulsar Function SDK
  • 45.
    #ossummit Setting Subscription TypeJava Consumer<byte[]> consumer = pulsarClient.newConsumer() .topic(topic) .subscriptionName(“subscriptionName") .subscriptionType(SubscriptionType.Shared) .subscribe();
  • 46.
    #ossummit Subscribing to aTopic and Setting Subscription Name Java Consumer<byte[]> consumer = pulsarClient.newConsumer() .topic(topic) .subscriptionName(“subscriptionName") .subscribe();
  • 47.
    #ossummit Producing Object EventsFrom Java ProducerBuilder<Observation> producerBuilder = pulsarClient.newProducer(JSONSchema.of(Observation.class)) .topic(topicName) .producerName(producerName).sendTimeout(60, TimeUnit.SECONDS); Producer<Observation> producer = producerBuilder.create(); msgID = producer.newMessage() .key(someUniqueKey) .value(observation) .send();
  • 48.
    #ossummit Monitoring and MetricsCheck curl http://pulsar1:8080/admin/v2/persistent/conf/europe/first/stats | python3 -m json.tool bin/pulsar-admin topics stats-internal persistent://conf/europe/first curl http://pulsar1:8080/metrics/ bin/pulsar-admin topics stats-internal persistent://conf/europe/first bin/pulsar-admin topics peek-messages --count 5 --subscription ete-reader persistent://conf/europe/first bin/pulsar-admin topics subscriptions persistent://conf/europe/first
  • 49.
    #ossummit Metrics: Broker Broker metricsare exposed under "/metrics" at port 8080. You can change the port by updating webServicePort to a different port in the broker.conf configuration file. All the metrics exposed by a broker are labeled with cluster=${pulsar_cluster}. The name of Pulsar cluster is the value of ${pulsar_cluster}, configured in the broker.conf file. For more information: https://pulsar.apache.org/docs/en/reference-metrics/#broker
  • 50.
    #ossummit Metrics: Broker These metricsare available for brokers: ● Namespace metrics ○ Replication metrics ● Topic metrics ○ Replication metrics ● ManagedLedgerCache metrics ● ManagedLedger metrics ● LoadBalancing metrics ○ BundleUnloading metrics ○ BundleSplit metrics ● Subscription metrics ● Consumer metrics ● ManagedLedger bookie client metrics
  • 51.
    #ossummit Cleanup bin/pulsar-admin topics deletepersistent://conf/europe/first bin/pulsar-admin namespaces delete conf/europe bin/pulsar-admin tenants delete conf
  • 52.
    #ossummit • Unified MessagingPlatform • AdTech • Fraud Detection • Connected Car • IoT Analytics • Microservices Development Use Cases
  • 54.
    #ossummit Java for Pulsar ●https://github.com/tspannhw/airquality ● https://github.com/tspannhw/FLiPN-AirQuality-REST ● https://github.com/tspannhw/pulsar-airquality-function ● https://github.com/tspannhw/FLiPN-DEVNEXUS-2022 ● https://github.com/tspannhw/FLiP-Py-ADS-B ● https://github.com/tspannhw/pulsar-adsb-function ● https://github.com/tspannhw/airquality-amqp-consumer ● https://github.com/tspannhw/airquality-mqtt-consumer ● https://github.com/tspannhw/airquality-consumer ● https://github.com/tspannhw/airquality-kafka-consumer
  • 55.
    #ossummit Python For Pulsaron Pi ● https://github.com/tspannhw/FLiP-Pi-BreakoutGarden ● https://github.com/tspannhw/FLiP-Pi-Thermal ● https://github.com/tspannhw/FLiP-Pi-Weather ● https://github.com/tspannhw/FLiP-RP400 ● https://github.com/tspannhw/FLiP-Py-Pi-GasThermal ● https://github.com/tspannhw/FLiP-PY-FakeDataPulsar ● https://github.com/tspannhw/FLiP-Py-Pi-EnviroPlus ● https://github.com/tspannhw/PythonPulsarExamples ● https://github.com/tspannhw/pulsar-pychat-function ● https://github.com/tspannhw/FLiP-PulsarDevPython101 ● https://github.com/tspannhw/airquality