Modular Arithmetic
Modulo is all about finding the
remainder when one number
divides another
WASSCE May/June 2018
Copy and complete the tables for
the addition āŠ• and ⨂ in modulo
5
Use the tables to find;
a) 4 ⨂ 2 āŠ• 3 ⨂ 4
b) š‘š š‘ š‘¢š‘ā„Ž š‘”ā„Žš‘Žš‘” š‘š ⨂ š‘š = š‘š āŠ• š‘š
c) š‘› š‘ š‘¢š‘ā„Ž š‘”ā„Žš‘Žš‘” 3 āŠ• š‘› = 2āØ‚š‘›
Solution
š‘Ž) 4 ⨂ 2 ⨁ 3 ⨂ 4 = 3 ⨁ 2
= 0
š‘) š‘š āŠ— š‘š = š‘š āØš‘š
š‘) 2 āŠ— 2 = 2 ⨁ 2
∓ š‘š = 2
āŠ• 1 2 3 4
1 2 3 4 0
2 3
3 4 2
4 0
⨂ 1 2 3 4
1 1 3 4 0
2 2
3 2
4 1
⨂ 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1
āŠ• 1 2 3 4
1
2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3
SSSCE Nov 2003
Draw a table for multiplication,⨂,
modulo 7 on the set š‘ƒ = {2,3,4,5,6}
Use your table to find on the set P,
the truth set of š‘›āØ‚ š‘› ⨂ 6 = 3
Solution
š‘) From the table š‘›āØ‚ š‘› ⨂ 6 = 3
2⨂ 2 ⨂ 6 = 2 ⨂ 5 = 3
5⨂ 5 ⨂ 6 = 5 ⨂ 2 = 3
š’ = {šŸ, šŸ“}
⨂ šŸ šŸ‘ šŸ’ šŸ“ šŸ”
šŸ 4 6 1 3 5
šŸ‘ 6 2 5 1 4
šŸ’ 1 5 2 6 3
šŸ“ 3 1 6 4 2
šŸ” 5 4 3 2 1
a
WASSCE Nov 2007
Copy and complete the
multiplication table modulo 5 on
the set {1,2,3,4}
From the table solve the expression
2š‘› āˆ— 4 = 3
Solution
šŗš‘–š‘£š‘’š‘› 2š‘› āˆ— 4 = 3
From the table
šŸ āˆ— šŸ’ = šŸ‘ → šŸš’ = šŸ, š’ = šŸ
āˆ— 1 2 3 4
1 1 3
2 4 1
3 3 2
4 3 1
āˆ— 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1
WASSCE May/June 2006
Draw a table of multiplication ⨂, in
š‘€š‘œš‘‘š‘¢š‘™š‘œ 8 on the set {2,3,5,7}
Solution
⨂ 2 3 5 7
2 4 6 2 6
3 6 1 7 5
5 2 7 1 3
7 6 5 3 1
1. Simplify 9š‘šš‘œš‘‘6
A. 3
B. 2
C. 1
D. 0
E. 5
F. The correct answer is 3
š‘†š‘œš‘™š‘¢š‘”š‘–š‘œš‘›
9š‘šš‘œš‘‘6
6 goes into 9 once
remainder 3
2. Evaluate 2⨂4 in modulo 5
A. 3
B. 4
C. 2
D. 6
E. 7
The correct answer is 3
Solution
2 ⨂ 4 = 8
8š‘šš‘œš‘‘5 = 3
3. Given that š‘› āŠ• 5 = 0š‘šš‘œš‘‘6. Find the value of š‘›, such that 0 < š‘› < 15 .
A. š‘› = {1,7}
B. š‘› = {1,7,12}
C. š‘› = {0,6,12}
D. š‘› = {1,7,13}
E. š‘› = {1,13}
The correct answer is š‘› = {1,7,13}
Solution
š‘› āŠ• 5 = 0š‘šš‘œš‘‘6
1 āŠ• 5 = 0š‘šš‘œš‘‘6
7 āŠ• 5 = 0š‘šš‘œš‘‘6
13 āŠ• 5 = 0š‘šš‘œš‘‘6
19 āŠ• 5 = 0š‘šš‘œš‘‘6
Etc,
For 0 < š‘› < 15
š‘› = {1,7,13}
4. Which of the following satisfies the equation š‘¦ š‘šš‘œš‘‘ 7 = 1 in the
interval 0 < š‘¦ < 10?
A. {1,9}
B. {1,5}
C. {1}
D. {8}
E. {2,8}
F. {1,8}
The correct answer is
1
2
š‘š‘ž
Solution
1 š‘šš‘œš‘‘ 7 = 1
8 š‘šš‘œš‘‘ 7 = 1
š‘‡ā„Žš‘’ š‘£š‘Žš‘™š‘¢š‘’š‘  š‘Žš‘Ÿš‘’
{1,8}
5. Solve š‘„ + 1 š‘šš‘œš‘‘ 5 = 3 in the interval 0 < š‘„ < 10.
A. š‘„ = {7,8}
B. š‘„ = {2,8}
C. š‘„ = {7}
D. š‘„ = {2}
E. š‘„ = {2,7}
The correct answer isš‘„ = {2,7}
Solution
3 š‘šš‘œš‘‘ 5 = 3
š‘„ + 1 = 3
š‘„ = 2
8 š‘šš‘œš‘‘ 5 = 3
š‘„ + 1 = 8
š‘„ = 7
13 š‘šš‘œš‘‘ 5 = 3
š‘„ + 1 = 13
š‘„ = 12
For the given interval
0 < š‘„ < 10
š‘„ = {2,7}
6. Find the remainder when 1001 is divided by 3
A. 2
B. 3
C. 4
D. 6
E. 5
The correct answer is 2
Solution
1001 = 3 Ɨ 999 + 2
7. Evaluate 2018 š‘šš‘œš‘‘ 11
A. 1
B. 2
C. 3
D. 4
E. 5
The correct answer is 5
Solution
2018 = 11 Ɨ 183 + 5
2018 š‘šš‘œš‘‘ 11 = 5
8. Find the remainder when āˆ’12 is divided by 5.
A. āˆ’3
B. 3
C. āˆ’7
D. āˆ’2
E. 5
The correct answer is 3
Solution
āˆ’12 = āˆ’5 Ɨ 3 + 3
āˆ’12 š‘šš‘œš‘‘ 5 = 3
9. Find the remainder when āˆ’12 is divided by 3
A. āˆ’2
B. āˆ’1
C. 0
D. 1
E. 2
The correct answer is 0
Solution
āˆ’12 = āˆ’4 Ɨ 3 + 0
āˆ’12 š‘šš‘œš‘‘ 3 = 0
10. Simplify 1 + 8š‘šš‘œš‘‘6
A. 3
B. 2
C. 1
D. 0
E. 4
The correct answer is 3
Solution
1 + 8š‘šš‘œš‘‘6 = 1 + 2š‘šš‘œš‘‘6 = 3š‘šš‘œš‘‘6
SUMMARY
Modulo is just about remainder
Note that remainder is not negative

Modular arithmetic revision card

  • 1.
    Modular Arithmetic Modulo isall about finding the remainder when one number divides another
  • 2.
    WASSCE May/June 2018 Copyand complete the tables for the addition āŠ• and ⨂ in modulo 5 Use the tables to find; a) 4 ⨂ 2 āŠ• 3 ⨂ 4 b) š‘š š‘ š‘¢š‘ā„Ž š‘”ā„Žš‘Žš‘” š‘š ⨂ š‘š = š‘š āŠ• š‘š c) š‘› š‘ š‘¢š‘ā„Ž š‘”ā„Žš‘Žš‘” 3 āŠ• š‘› = 2āØ‚š‘› Solution š‘Ž) 4 ⨂ 2 ⨁ 3 ⨂ 4 = 3 ⨁ 2 = 0 š‘) š‘š āŠ— š‘š = š‘š āØš‘š š‘) 2 āŠ— 2 = 2 ⨁ 2 ∓ š‘š = 2 āŠ• 1 2 3 4 1 2 3 4 0 2 3 3 4 2 4 0 ⨂ 1 2 3 4 1 1 3 4 0 2 2 3 2 4 1 ⨂ 1 2 3 4 1 1 2 3 4 2 2 4 1 3 3 3 1 4 2 4 4 3 2 1 āŠ• 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
  • 3.
    SSSCE Nov 2003 Drawa table for multiplication,⨂, modulo 7 on the set š‘ƒ = {2,3,4,5,6} Use your table to find on the set P, the truth set of š‘›āØ‚ š‘› ⨂ 6 = 3 Solution š‘) From the table š‘›āØ‚ š‘› ⨂ 6 = 3 2⨂ 2 ⨂ 6 = 2 ⨂ 5 = 3 5⨂ 5 ⨂ 6 = 5 ⨂ 2 = 3 š’ = {šŸ, šŸ“} ⨂ šŸ šŸ‘ šŸ’ šŸ“ šŸ” šŸ 4 6 1 3 5 šŸ‘ 6 2 5 1 4 šŸ’ 1 5 2 6 3 šŸ“ 3 1 6 4 2 šŸ” 5 4 3 2 1 a
  • 4.
    WASSCE Nov 2007 Copyand complete the multiplication table modulo 5 on the set {1,2,3,4} From the table solve the expression 2š‘› āˆ— 4 = 3 Solution šŗš‘–š‘£š‘’š‘› 2š‘› āˆ— 4 = 3 From the table šŸ āˆ— šŸ’ = šŸ‘ → šŸš’ = šŸ, š’ = šŸ āˆ— 1 2 3 4 1 1 3 2 4 1 3 3 2 4 3 1 āˆ— 1 2 3 4 1 1 2 3 4 2 2 4 1 3 3 3 1 4 2 4 4 3 2 1
  • 5.
    WASSCE May/June 2006 Drawa table of multiplication ⨂, in š‘€š‘œš‘‘š‘¢š‘™š‘œ 8 on the set {2,3,5,7} Solution ⨂ 2 3 5 7 2 4 6 2 6 3 6 1 7 5 5 2 7 1 3 7 6 5 3 1
  • 6.
    1. Simplify 9š‘šš‘œš‘‘6 A.3 B. 2 C. 1 D. 0 E. 5 F. The correct answer is 3 š‘†š‘œš‘™š‘¢š‘”š‘–š‘œš‘› 9š‘šš‘œš‘‘6 6 goes into 9 once remainder 3
  • 7.
    2. Evaluate 2⨂4in modulo 5 A. 3 B. 4 C. 2 D. 6 E. 7 The correct answer is 3 Solution 2 ⨂ 4 = 8 8š‘šš‘œš‘‘5 = 3
  • 8.
    3. Given thatš‘› āŠ• 5 = 0š‘šš‘œš‘‘6. Find the value of š‘›, such that 0 < š‘› < 15 . A. š‘› = {1,7} B. š‘› = {1,7,12} C. š‘› = {0,6,12} D. š‘› = {1,7,13} E. š‘› = {1,13} The correct answer is š‘› = {1,7,13} Solution š‘› āŠ• 5 = 0š‘šš‘œš‘‘6 1 āŠ• 5 = 0š‘šš‘œš‘‘6 7 āŠ• 5 = 0š‘šš‘œš‘‘6 13 āŠ• 5 = 0š‘šš‘œš‘‘6 19 āŠ• 5 = 0š‘šš‘œš‘‘6 Etc, For 0 < š‘› < 15 š‘› = {1,7,13}
  • 9.
    4. Which ofthe following satisfies the equation š‘¦ š‘šš‘œš‘‘ 7 = 1 in the interval 0 < š‘¦ < 10? A. {1,9} B. {1,5} C. {1} D. {8} E. {2,8} F. {1,8} The correct answer is 1 2 š‘š‘ž Solution 1 š‘šš‘œš‘‘ 7 = 1 8 š‘šš‘œš‘‘ 7 = 1 š‘‡ā„Žš‘’ š‘£š‘Žš‘™š‘¢š‘’š‘  š‘Žš‘Ÿš‘’ {1,8}
  • 10.
    5. Solve š‘„+ 1 š‘šš‘œš‘‘ 5 = 3 in the interval 0 < š‘„ < 10. A. š‘„ = {7,8} B. š‘„ = {2,8} C. š‘„ = {7} D. š‘„ = {2} E. š‘„ = {2,7} The correct answer isš‘„ = {2,7} Solution 3 š‘šš‘œš‘‘ 5 = 3 š‘„ + 1 = 3 š‘„ = 2 8 š‘šš‘œš‘‘ 5 = 3 š‘„ + 1 = 8 š‘„ = 7 13 š‘šš‘œš‘‘ 5 = 3 š‘„ + 1 = 13 š‘„ = 12 For the given interval 0 < š‘„ < 10 š‘„ = {2,7}
  • 11.
    6. Find theremainder when 1001 is divided by 3 A. 2 B. 3 C. 4 D. 6 E. 5 The correct answer is 2 Solution 1001 = 3 Ɨ 999 + 2
  • 12.
    7. Evaluate 2018š‘šš‘œš‘‘ 11 A. 1 B. 2 C. 3 D. 4 E. 5 The correct answer is 5 Solution 2018 = 11 Ɨ 183 + 5 2018 š‘šš‘œš‘‘ 11 = 5
  • 13.
    8. Find theremainder when āˆ’12 is divided by 5. A. āˆ’3 B. 3 C. āˆ’7 D. āˆ’2 E. 5 The correct answer is 3 Solution āˆ’12 = āˆ’5 Ɨ 3 + 3 āˆ’12 š‘šš‘œš‘‘ 5 = 3
  • 14.
    9. Find theremainder when āˆ’12 is divided by 3 A. āˆ’2 B. āˆ’1 C. 0 D. 1 E. 2 The correct answer is 0 Solution āˆ’12 = āˆ’4 Ɨ 3 + 0 āˆ’12 š‘šš‘œš‘‘ 3 = 0
  • 15.
    10. Simplify 1+ 8š‘šš‘œš‘‘6 A. 3 B. 2 C. 1 D. 0 E. 4 The correct answer is 3 Solution 1 + 8š‘šš‘œš‘‘6 = 1 + 2š‘šš‘œš‘‘6 = 3š‘šš‘œš‘‘6
  • 16.
    SUMMARY Modulo is justabout remainder Note that remainder is not negative