Keeping the Pulse
of Your Da ta :
Why You Need Data
Observa bility to
Improve Da ta Qua lity
Spea kers
Julie Skeen
Sr. Product Marketing Manager
Micha el Sisola k
Principa l Sa les Engineer
Agenda
• Introduction to data observability
• How data observability works
• Use case examples
• Q&A
3
47%
of newly crea ted
da ta records ha ve a t
lea st one critica l error
68%
of orga niza tions sa y
dispa ra te da ta nega tively
impa cts their orga niza tion
84%
of CEOs sa y tha t they a re
concerned a bout the integrity of the
da ta they a re ma king decisions on
Precisely Da ta Trends Survey Forbes
Ha rva rd Business Review
Da ta integrity is a business impera tive
Introduction to Da ta
Observa bility
Business Challenges
• Data downtime disrupts critical data
pipelines and processes that power
downstream analytics and operations
• Lack of visibility around health of data
reduces confidence in business decisions
• Traditional manual methods do not scale,
are error-prone, and are resource intensive
5
Everything old is new a ga in
• “W. Edwards Deming The Father of Quality Management” started the
observability concept 100 years ago
• Observability is a key foundational concept of SPC, Lean, Six Sigma and
any process dependent on building quality into repetitive tasks
Applying the same principles to data = data observability
• Using statistical methods to control complex processes to ensure quality
data products over time
Wha t is Da ta Observa bility?
6
IDC; Phil Goodwin a nd Stewa rt Bond, “IDC Ma rket Gla nce: Da ta Ops, 2Q21”(June 2021)
Ga rtner, Hype Cycle for Da ta Ma na gement, 2022, Melody Chien, Ankush Ja in, Robert Tha na ra j, June 30, 2022
Why Now?
7
• Businesses a re more da ta -driven
tha n ever
• Problema tic events a re infrequent
but ca n be ca ta strophic
• User’s da ta expertise ha s evolved
a long with expecta tions to do
more with it
• Da ta prolifera tion a nd technology
diversifica tion
• AI ha s evolved to support the
complexity of the problem
Da ta Observa bility is proa ctive, not rea ctive
8
Da ta Integrity
a nd Qua lity
QA is done at the
time of development
Ra ndom issues a re
surfa ced
Users find a nd
report defects
9
9
Typica l Da ta Products a nd Pipelines
Tra ditiona lly, the qua lity of a da ta product or pipeline is ensured during the
development process a nd not throughout the opera tiona l lifecycle.
Da ta Product(s)
X
Da ta Source #1
?
Da ta Source #2
?
Da ta Source #3
?
Da ta Source #4
?
Crea te a nd/ or
Source The Da ta
Tra nsform
Da ta
Enrich / Blend /
Merge Da ta
Publish a n
Expose Da ta
P
r
o
c
e
s
s
10
10
Da ta Pipelines with Observa bility
Da ta Observa bility tools observe the performa nce of da ta products a nd processes in order to
detect significa nt va ria tions before they result in the crea tion of erroneous work product in reports,
a na lytics, insights a nd outcomes.
Da ta Source #1 Da ta Source #2 Da ta Source #3
!
Da ta Source #4
Crea te a nd/ or
Source The Da ta
Tra nsform
Da ta
Enrich / Blend /
Merge Da ta
Publish a n
Expose Da ta
P
r
o
c
e
s
s
Observing ea ch sta ge in the pipeline
Issues identified a nd resolved prior to fina l product
O
b
s
e
r
v
e
Da ta Product(s)
11
Da ta
Observa bility
Impa ct of
Unexpected
Da ta
Da ta a noma lies ha ve downstrea m impa cts, but not every
issue impa cts the process in the sa me wa y.
The sooner you ca n detect a noma lies, the sooner you
ca n a ssess the impa cts a nd effectively remedia te.
EXAMPLE
How Da ta Observa bility Works
Discovery Ana lysis Action
Intelligent Ana lysis Identifies Anoma lies
13
AI identifies
trends tha t
tra ditiona l
methods
ca nnot
ea sily find
Ra ndom Noise Upwa rd Trend Downwa rd Trend
Step Cha nge 2 Step Cha nge 1 Sudden Jump Up
Da ta Observa bility a nd Qua lity
14
Rules
Metadata
Time
Data Quality
Management
Da ta Observa bility Focused Ca pa bilities
• Alerts a nd da shboa rds for overa ll da ta hea lth
trending a nd threshold a na lysis
• Anoma ly detection ba sed on volume, freshness,
distribution a nd schema meta da ta
• Predictive a na lysis simula ting huma n intelligence
to identify potentia l a dverse da ta integrity events
“Observa bility is the missing piece toda y to give our da ta stewa rds a ccess
to da ta discovery insights without ha ving to go to IT for queries or reports”
- Jea n-Pa ul Otte, CDO, Degroof Peterca m
Alerts a nd Impa cts
15
Volume Alert
Impacts
Use Ca se Exa mples
17
Da ta
Observa bility
Impa ct of
Unexpected
Va lues
An incorrect currency type in the order crea ted a n
infla ted revenue a mount which would ha ve resulted in
the incorrect tota l revenue a mount.
The error wa s ca used beca use the currency conversion
ta ble wa s not upda ted.
The Da ta Observa bility solution would notify the
Da ta Ops tea m of the da ta drift so tha t they could
quickly resolve the issue a nd prevent it from impa cting
downstrea m a na lytics a nd rela ted decisions.
EXAMPLE
18
Da ta
Observa bility
Unexpected
da ta volumes
impa ct
opera tions
A single-da y spike of 500% in the dolla r a mount of orders
ca used beca use the compa ny expa nded into a new
geogra phy without notifying a ll a ffected a rea s within the
compa ny.
Da ta stewa rd would receive a volume a lert which a llows
them to quickly investiga te the issue before it impa cts
downstrea m a na lytics a nd rela ted decisions.
EXAMPLE
Use Ca se Reca p
19
• Da ta a noma ly impa cted
downstrea m processes
• Impa ct of Unexpected Va lues
ca used by a n inva lid currency type
• Unexpected data values ca used by
la ck of communica tion interna lly
Understa nd the hea lth of your data with continuous measuring and monitoring
Obta in visibility into your da ta la ndsca pe a nd dependencies with intuitive
self-discovery ca pa bilities
Receive a lerts when outliers a nd a noma lies a re identified using a rtificia l intelligence
Resolve da ta drift a nd shift when identified by intelligent a na lysis
1
2
3
4
Enable quick remediation when issues occur by understanding the cause of
the issue
5
Da ta Observa bility benefits
20
Da ta Observa bility
Proactively uncover data
a noma lies a nd ta ke a ction
before they become costly
downstrea m issues
For trusted da ta ,
you need da ta integrity
Data integrity is data with maximum
a ccura cy, consistency, a nd context for
confident business decision-ma king
Da ta
Integrity
The modular, interoperable Precisely Data
Integrity Suite conta ins everything you need
to deliver a ccura te, consistent, contextua l
da ta to your business - wherever a nd
whenever it’s needed.
23
7 strong modules deliver exceptiona l va lue
Da ta
Integra tion
Da ta
Observa bility
Da ta
Governa nce
Da ta
Qua lity
Geo
Addressing
Spa tia l
Ana lytics
Da ta
Enrichment
Break down
da ta silos
by quickly
building
modern da ta
pipelines tha t
drive
innova tion
Proa ctively
uncover da ta
a noma lies a nd
ta ke a ction
before they
become costly
downstrea m
issues
Ma na ge da ta
policy a nd
processes with
grea ter insight
into your da ta ’s
mea ning,
linea ge, a nd
impa ct
Deliver da ta
tha t’s a ccura te,
consistent, a nd
fit for purpose
a cross
opera tiona l
a nd a na lytica l
systems
Verify,
sta nda rdize,
clea nse, a nd
geocode
a ddresses to
unlock va lua ble
context for more
informed
decision ma king
Derive a nd
visua lize spa tia l
rela tionships
hidden in your
da ta to revea l
critica l context
for better
decisions
Enrich your
business da ta
with expertly
cura ted da ta sets
conta ining
thousa nds of
a ttributes for
fa ster, confident
decisions
Questions?
Tha nk you
Lea rn more a bout Da ta Observa bility
https://www.precisely.com/product/data -integrity/ precisely-da ta -integrity-suite/ da ta -observa bility

Keeping the Pulse of Your Data – Why You Need Data Observability to Improve Data Quality

  • 1.
    Keeping the Pulse ofYour Da ta : Why You Need Data Observa bility to Improve Da ta Qua lity
  • 2.
    Spea kers Julie Skeen Sr.Product Marketing Manager Micha el Sisola k Principa l Sa les Engineer
  • 3.
    Agenda • Introduction todata observability • How data observability works • Use case examples • Q&A 3
  • 4.
    47% of newly created da ta records ha ve a t lea st one critica l error 68% of orga niza tions sa y dispa ra te da ta nega tively impa cts their orga niza tion 84% of CEOs sa y tha t they a re concerned a bout the integrity of the da ta they a re ma king decisions on Precisely Da ta Trends Survey Forbes Ha rva rd Business Review Da ta integrity is a business impera tive
  • 5.
    Introduction to Data Observa bility Business Challenges • Data downtime disrupts critical data pipelines and processes that power downstream analytics and operations • Lack of visibility around health of data reduces confidence in business decisions • Traditional manual methods do not scale, are error-prone, and are resource intensive 5
  • 6.
    Everything old isnew a ga in • “W. Edwards Deming The Father of Quality Management” started the observability concept 100 years ago • Observability is a key foundational concept of SPC, Lean, Six Sigma and any process dependent on building quality into repetitive tasks Applying the same principles to data = data observability • Using statistical methods to control complex processes to ensure quality data products over time Wha t is Da ta Observa bility? 6 IDC; Phil Goodwin a nd Stewa rt Bond, “IDC Ma rket Gla nce: Da ta Ops, 2Q21”(June 2021) Ga rtner, Hype Cycle for Da ta Ma na gement, 2022, Melody Chien, Ankush Ja in, Robert Tha na ra j, June 30, 2022
  • 7.
    Why Now? 7 • Businessesa re more da ta -driven tha n ever • Problema tic events a re infrequent but ca n be ca ta strophic • User’s da ta expertise ha s evolved a long with expecta tions to do more with it • Da ta prolifera tion a nd technology diversifica tion • AI ha s evolved to support the complexity of the problem
  • 8.
    Da ta Observability is proa ctive, not rea ctive 8
  • 9.
    Da ta Integrity and Qua lity QA is done at the time of development Ra ndom issues a re surfa ced Users find a nd report defects 9 9 Typica l Da ta Products a nd Pipelines Tra ditiona lly, the qua lity of a da ta product or pipeline is ensured during the development process a nd not throughout the opera tiona l lifecycle. Da ta Product(s) X Da ta Source #1 ? Da ta Source #2 ? Da ta Source #3 ? Da ta Source #4 ? Crea te a nd/ or Source The Da ta Tra nsform Da ta Enrich / Blend / Merge Da ta Publish a n Expose Da ta P r o c e s s
  • 10.
    10 10 Da ta Pipelineswith Observa bility Da ta Observa bility tools observe the performa nce of da ta products a nd processes in order to detect significa nt va ria tions before they result in the crea tion of erroneous work product in reports, a na lytics, insights a nd outcomes. Da ta Source #1 Da ta Source #2 Da ta Source #3 ! Da ta Source #4 Crea te a nd/ or Source The Da ta Tra nsform Da ta Enrich / Blend / Merge Da ta Publish a n Expose Da ta P r o c e s s Observing ea ch sta ge in the pipeline Issues identified a nd resolved prior to fina l product O b s e r v e Da ta Product(s)
  • 11.
    11 Da ta Observa bility Impact of Unexpected Da ta Da ta a noma lies ha ve downstrea m impa cts, but not every issue impa cts the process in the sa me wa y. The sooner you ca n detect a noma lies, the sooner you ca n a ssess the impa cts a nd effectively remedia te. EXAMPLE
  • 12.
    How Da taObserva bility Works Discovery Ana lysis Action
  • 13.
    Intelligent Ana lysisIdentifies Anoma lies 13 AI identifies trends tha t tra ditiona l methods ca nnot ea sily find Ra ndom Noise Upwa rd Trend Downwa rd Trend Step Cha nge 2 Step Cha nge 1 Sudden Jump Up
  • 14.
    Da ta Observability a nd Qua lity 14 Rules Metadata Time Data Quality Management Da ta Observa bility Focused Ca pa bilities • Alerts a nd da shboa rds for overa ll da ta hea lth trending a nd threshold a na lysis • Anoma ly detection ba sed on volume, freshness, distribution a nd schema meta da ta • Predictive a na lysis simula ting huma n intelligence to identify potentia l a dverse da ta integrity events “Observa bility is the missing piece toda y to give our da ta stewa rds a ccess to da ta discovery insights without ha ving to go to IT for queries or reports” - Jea n-Pa ul Otte, CDO, Degroof Peterca m
  • 15.
    Alerts a ndImpa cts 15 Volume Alert Impacts
  • 16.
    Use Ca seExa mples
  • 17.
    17 Da ta Observa bility Impact of Unexpected Va lues An incorrect currency type in the order crea ted a n infla ted revenue a mount which would ha ve resulted in the incorrect tota l revenue a mount. The error wa s ca used beca use the currency conversion ta ble wa s not upda ted. The Da ta Observa bility solution would notify the Da ta Ops tea m of the da ta drift so tha t they could quickly resolve the issue a nd prevent it from impa cting downstrea m a na lytics a nd rela ted decisions. EXAMPLE
  • 18.
    18 Da ta Observa bility Unexpected data volumes impa ct opera tions A single-da y spike of 500% in the dolla r a mount of orders ca used beca use the compa ny expa nded into a new geogra phy without notifying a ll a ffected a rea s within the compa ny. Da ta stewa rd would receive a volume a lert which a llows them to quickly investiga te the issue before it impa cts downstrea m a na lytics a nd rela ted decisions. EXAMPLE
  • 19.
    Use Ca seReca p 19 • Da ta a noma ly impa cted downstrea m processes • Impa ct of Unexpected Va lues ca used by a n inva lid currency type • Unexpected data values ca used by la ck of communica tion interna lly
  • 20.
    Understa nd thehea lth of your data with continuous measuring and monitoring Obta in visibility into your da ta la ndsca pe a nd dependencies with intuitive self-discovery ca pa bilities Receive a lerts when outliers a nd a noma lies a re identified using a rtificia l intelligence Resolve da ta drift a nd shift when identified by intelligent a na lysis 1 2 3 4 Enable quick remediation when issues occur by understanding the cause of the issue 5 Da ta Observa bility benefits 20
  • 21.
    Da ta Observability Proactively uncover data a noma lies a nd ta ke a ction before they become costly downstrea m issues
  • 22.
    For trusted data , you need da ta integrity Data integrity is data with maximum a ccura cy, consistency, a nd context for confident business decision-ma king Da ta Integrity
  • 23.
    The modular, interoperablePrecisely Data Integrity Suite conta ins everything you need to deliver a ccura te, consistent, contextua l da ta to your business - wherever a nd whenever it’s needed. 23
  • 24.
    7 strong modulesdeliver exceptiona l va lue Da ta Integra tion Da ta Observa bility Da ta Governa nce Da ta Qua lity Geo Addressing Spa tia l Ana lytics Da ta Enrichment Break down da ta silos by quickly building modern da ta pipelines tha t drive innova tion Proa ctively uncover da ta a noma lies a nd ta ke a ction before they become costly downstrea m issues Ma na ge da ta policy a nd processes with grea ter insight into your da ta ’s mea ning, linea ge, a nd impa ct Deliver da ta tha t’s a ccura te, consistent, a nd fit for purpose a cross opera tiona l a nd a na lytica l systems Verify, sta nda rdize, clea nse, a nd geocode a ddresses to unlock va lua ble context for more informed decision ma king Derive a nd visua lize spa tia l rela tionships hidden in your da ta to revea l critica l context for better decisions Enrich your business da ta with expertly cura ted da ta sets conta ining thousa nds of a ttributes for fa ster, confident decisions
  • 25.
  • 26.
    Tha nk you Learn more a bout Da ta Observa bility https://www.precisely.com/product/data -integrity/ precisely-da ta -integrity-suite/ da ta -observa bility