THE VALUE OF ANALYTICS
IN THE WORLD OF THE DIGISUMER
HPMC 2014
PETER WOODS

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
AGENDA

THE VALUE OF ANALYTICS

•
•
•

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

The business purpose of analytics
The conditions to guarantee success
How new technologies support analytics
THE NEW CUSTOMER

IS MORE DEMANDING AND LESS LOYAL

THE CUSTOMER
IS A CAT!
The Customer is a cat.
To conquer the heart of this new Customer type
is one of the big challenges.

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
THE NEW CUSTOMER

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

ALL DOGS ARE CHASING THE SAME CAT!
C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
WHY DO WE CARE?
Act
Orient
Decide

MARKET
OPPORTUNITY

Decide

Orient
Act
Observe

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

YOUR
COMPETITIVE
ADVANTAGE
WHAT ENABLES
IT‘S PREDICTIVE ANALYTICS LOOKING INTO THE FUTURE
THIS MAGIC?

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
WHERE IS
ANALYTICS OF AS A GAME-CHANGER
VALUE?
Intelligence-driven
Business Differentiation

Intelligence-driven
Business Innovation

Intelligence-driven
Business Transformation

Increasing process
effectiveness and
customer relevance

Innovating existing
business model with new
revenue streams

Transforming the business
entering in brand new
markets

Campaign Management
Optimization

Cross-sell to new
business lines

Creation of a new
company

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
WHAT A GREAT
IDEA!

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
SCIENCE
C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

ART
MARKETERS TODAY ARE DATA-DRIVEN

Structured

Rational needs
Information,
Transaction, Service

SCIENCE
Customer
Experience

Semistructured

Emotional needs

Unstructured

#SASCI

Belonging, Identity, Aspiration,
Performance, Knowledge

Sources: Work·Play·Experience I Forrester Blog--Kerry Bodine, April 2, 2014 | SAS

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

ART
MARKETING CREATES UNDERSTANDING
Forecasting Scenario analysis

Dynamic time-lap analysis
Decision tree analysis

•
•
•

Self-service
Easy to use Analytics
Work with more data

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

•
•
•

Reporting and Dashboards
Mobile BI
Collaboration
PICTURES MEET NUMBERS

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
YES, I WANT
IT IS STRAIGHT FORWARD!
ANALYTICS

BUSINESS
MANAGER
Domain Expert
Makes Decisions
Evaluates Processes and ROI

EVALUATE /
MONITOR
RESULTS

IDENTIFY /
FORMULATE
PROBLEM
DATA
PREPARATION

DEPLOY
MODEL

IT SYSTEMS /
MANAGEMENT
Model Validation
Model Deployment
Model Monitoring
Data Preparation

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

BUSINESS
ANALYST
Data Exploration
Data Visualization
Report Creation

DATA
EXPLORATION

DATA SCIENTIST /
DATA MINER /
STATISTICIAN

VALIDATE
MODEL

TRANSFORM
& SELECT
BUILD
MODEL

Story Telling
Exploratory Analysis
Descriptive Segmentation
Predictive Modeling
THE MARKETER CAN BUILD THE CUSTOMER PROFILE
Anonymous

Behavior

E-Mail

Account

Social
Customer Behavior
Customer Value (RFM)

Customer Value

Buying Behavior
Segmentation
Browsing
Behavior

Previous
browsing
activity

Clustering

Ability to look
back

Product linking
(nearness)

Predictive Insight
(Churn/Opportunity)

More effective
targeting

Lifecycle and Lifestyle
marketing

Frequency of visits

Customer as
partner/promoter

Engagement Level

Big Data
Time

Cookie
123

Sessions
1

2 … n

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

E-mail
Peter.woods@sas.com

User ID
PW45361

Geo

Online
Segment

01

Browser

Customer
Segment

DedicatedFan

Customer
Knowledge
THRIVING IN THE BIG DATA ERA

VOLUME
DATA SIZE

VARIETY
VELOCITY
VALUE

TODAY
C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

THE FUTURE
WHAT IS THE IMPACT FROM BIG DATA ON CUSTOMER ANALYTICS?
Operationalize
Real-time
In-database
….

DEPLOY

PREPARE
DATA

All Data
Number of Variables
New Events
Unstructured Data
…..

CUSTOMER
ANALYTICS

MODEL

No. of Iterations
Complex Models
Retraining
Ensembles
….
C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

EXPLORE

Fast
Interactive
Visual
Analytical
….
BIG DATA ANALYTICS?!

Value
creation

Analytics

High-Performance Analytics
C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
THE ANALYTICS
MOVE THE ANALYTICS TO THE (BIG) DATA
LIFECYCLE

EVALUATE /
MONITOR
RESULTS

IDENTIFY /
FORMULATE
PROBLEM
DATA
PREPARATION

DEPLOY
MODEL

DATA
EXPLORATION

VALIDATE
MODEL

TRANSFORM
& SELECT
BUILD
MODEL

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
BIG DATA
INTEGRATED USER EXPERIENCE
ANALYTICS
BUSINESS ANALYST
STATISTICIAN
DATA SCIENTIST /PROGRAMMER

GUI

Visual
Analytics

Data
Preparation

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

Exploration/
Visualization

GUI

Visual
Statistics

Modeling

Deployment
LAST PIECE OF THE
DATA QUALITY “DATA DELAYED IS DATA DENIED”
PUZZLE:

“…poor data quality costs U.S. businesses
$600 billion annually”
Market
value

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

Pumped into the
U.S. economy
DATA QUALITY
IMPACT: MANAGED DATA
Predictive Modeling Process

Limited and
poor Data

Low predictive effectiveness

Model lift
“low-average”

Exhaustive and
documented
information

High predictive effectiveness

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

Model lift
“good-high”
MANAGED ANALYTICAL DATA

1. Access the data
from multiple
systems:
- Integrate
- Enrich
- Describe

2. Cleanse data

- Analyse
- Inform
- Improve

Growth path:
Data governance, Master data management

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
BIG DATA ANALYTICS

BUSINESS ANALYST

STATISTICIAN
DATA SCIENTIST /PROGRAMMER

GUI

Visual
Analytics

Data
Preparation

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

Exploration/
Visualization

GUI

Visual
Statistics

Modeling

Deployment
BIG DATA ANALYTICS
BUSINESS ANALYST
STATISTICIAN
DATA SCIENTIST /PROGRAMMER

Quality
Analytics
Scoring

GUI

In-database
processing

Data
Preparation

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

Visual
Analytics

Exploration/
Visualization

GUI

Visual
Statistics

Modeling

Deployment
SO WHERE DO WE
READY YOURSELF TO CREATE VALUE
STAND

The business purpose of analytics >>>
•

Analytics to go beyond borders

The conditions to guarantee success >>>
•

Managed data

How new technologies support analytics >>>
•

Enabled on Hadoop, Cloud, real-time platforms

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
FUTURE VALUE OF ANALYTICS

According to experts:
- We are not able to crash a car anymore or
burn diner
- BUT Most importantly:
All customer communication is personal!!

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
MORE
INFORMATION

Download the whitepaper:
Four Tips to Mastering Multichannel Digital Marketing Attribution

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
THANK YOU
PETER.WOODS@SAS.COM
NL.LINKEDIN.COM/IN/PETERWOODS/

SELECTED MATERIALS COURTESY OF BRIAN VELLMURE
BRIANVELLMURE.COM

C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .

sas.com

HPMC 2014 - The value of analytics - SAS

  • 1.
    THE VALUE OFANALYTICS IN THE WORLD OF THE DIGISUMER HPMC 2014 PETER WOODS C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 2.
    AGENDA THE VALUE OFANALYTICS • • • C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . The business purpose of analytics The conditions to guarantee success How new technologies support analytics
  • 3.
    THE NEW CUSTOMER ISMORE DEMANDING AND LESS LOYAL THE CUSTOMER IS A CAT! The Customer is a cat. To conquer the heart of this new Customer type is one of the big challenges. C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 4.
    THE NEW CUSTOMER Cop yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . ALL DOGS ARE CHASING THE SAME CAT!
  • 5.
    C op yri g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 6.
    WHY DO WECARE? Act Orient Decide MARKET OPPORTUNITY Decide Orient Act Observe C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . YOUR COMPETITIVE ADVANTAGE
  • 7.
    WHAT ENABLES IT‘S PREDICTIVEANALYTICS LOOKING INTO THE FUTURE THIS MAGIC? C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 8.
    WHERE IS ANALYTICS OFAS A GAME-CHANGER VALUE? Intelligence-driven Business Differentiation Intelligence-driven Business Innovation Intelligence-driven Business Transformation Increasing process effectiveness and customer relevance Innovating existing business model with new revenue streams Transforming the business entering in brand new markets Campaign Management Optimization Cross-sell to new business lines Creation of a new company C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 9.
    WHAT A GREAT IDEA! Cop yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 10.
    C op yri g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 11.
    C op yri g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 12.
    C op yri g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 13.
    C op yri g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 14.
    SCIENCE C op yri g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . ART
  • 15.
    MARKETERS TODAY AREDATA-DRIVEN Structured Rational needs Information, Transaction, Service SCIENCE Customer Experience Semistructured Emotional needs Unstructured #SASCI Belonging, Identity, Aspiration, Performance, Knowledge Sources: Work·Play·Experience I Forrester Blog--Kerry Bodine, April 2, 2014 | SAS C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . ART
  • 16.
    MARKETING CREATES UNDERSTANDING ForecastingScenario analysis Dynamic time-lap analysis Decision tree analysis • • • Self-service Easy to use Analytics Work with more data C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . • • • Reporting and Dashboards Mobile BI Collaboration
  • 17.
    PICTURES MEET NUMBERS Cop yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 18.
    YES, I WANT ITIS STRAIGHT FORWARD! ANALYTICS BUSINESS MANAGER Domain Expert Makes Decisions Evaluates Processes and ROI EVALUATE / MONITOR RESULTS IDENTIFY / FORMULATE PROBLEM DATA PREPARATION DEPLOY MODEL IT SYSTEMS / MANAGEMENT Model Validation Model Deployment Model Monitoring Data Preparation C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . BUSINESS ANALYST Data Exploration Data Visualization Report Creation DATA EXPLORATION DATA SCIENTIST / DATA MINER / STATISTICIAN VALIDATE MODEL TRANSFORM & SELECT BUILD MODEL Story Telling Exploratory Analysis Descriptive Segmentation Predictive Modeling
  • 19.
    THE MARKETER CANBUILD THE CUSTOMER PROFILE Anonymous Behavior E-Mail Account Social Customer Behavior Customer Value (RFM) Customer Value Buying Behavior Segmentation Browsing Behavior Previous browsing activity Clustering Ability to look back Product linking (nearness) Predictive Insight (Churn/Opportunity) More effective targeting Lifecycle and Lifestyle marketing Frequency of visits Customer as partner/promoter Engagement Level Big Data Time Cookie 123 Sessions 1 2 … n C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . E-mail Peter.woods@sas.com User ID PW45361 Geo Online Segment 01 Browser Customer Segment DedicatedFan Customer Knowledge
  • 20.
    THRIVING IN THEBIG DATA ERA VOLUME DATA SIZE VARIETY VELOCITY VALUE TODAY C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . THE FUTURE
  • 21.
    WHAT IS THEIMPACT FROM BIG DATA ON CUSTOMER ANALYTICS? Operationalize Real-time In-database …. DEPLOY PREPARE DATA All Data Number of Variables New Events Unstructured Data ….. CUSTOMER ANALYTICS MODEL No. of Iterations Complex Models Retraining Ensembles …. C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . EXPLORE Fast Interactive Visual Analytical ….
  • 22.
    BIG DATA ANALYTICS?! Value creation Analytics High-PerformanceAnalytics C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 23.
    THE ANALYTICS MOVE THEANALYTICS TO THE (BIG) DATA LIFECYCLE EVALUATE / MONITOR RESULTS IDENTIFY / FORMULATE PROBLEM DATA PREPARATION DEPLOY MODEL DATA EXPLORATION VALIDATE MODEL TRANSFORM & SELECT BUILD MODEL C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 24.
    BIG DATA INTEGRATED USEREXPERIENCE ANALYTICS BUSINESS ANALYST STATISTICIAN DATA SCIENTIST /PROGRAMMER GUI Visual Analytics Data Preparation C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . Exploration/ Visualization GUI Visual Statistics Modeling Deployment
  • 25.
    LAST PIECE OFTHE DATA QUALITY “DATA DELAYED IS DATA DENIED” PUZZLE: “…poor data quality costs U.S. businesses $600 billion annually” Market value C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . Pumped into the U.S. economy
  • 26.
    DATA QUALITY IMPACT: MANAGEDDATA Predictive Modeling Process Limited and poor Data Low predictive effectiveness Model lift “low-average” Exhaustive and documented information High predictive effectiveness C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . Model lift “good-high”
  • 27.
    MANAGED ANALYTICAL DATA 1.Access the data from multiple systems: - Integrate - Enrich - Describe 2. Cleanse data - Analyse - Inform - Improve Growth path: Data governance, Master data management C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 28.
    BIG DATA ANALYTICS BUSINESSANALYST STATISTICIAN DATA SCIENTIST /PROGRAMMER GUI Visual Analytics Data Preparation C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . Exploration/ Visualization GUI Visual Statistics Modeling Deployment
  • 29.
    BIG DATA ANALYTICS BUSINESSANALYST STATISTICIAN DATA SCIENTIST /PROGRAMMER Quality Analytics Scoring GUI In-database processing Data Preparation C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . Visual Analytics Exploration/ Visualization GUI Visual Statistics Modeling Deployment
  • 30.
    SO WHERE DOWE READY YOURSELF TO CREATE VALUE STAND The business purpose of analytics >>> • Analytics to go beyond borders The conditions to guarantee success >>> • Managed data How new technologies support analytics >>> • Enabled on Hadoop, Cloud, real-time platforms C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 31.
    FUTURE VALUE OFANALYTICS According to experts: - We are not able to crash a car anymore or burn diner - BUT Most importantly: All customer communication is personal!! C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 32.
    MORE INFORMATION Download the whitepaper: FourTips to Mastering Multichannel Digital Marketing Attribution C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d .
  • 33.
    THANK YOU PETER.WOODS@SAS.COM NL.LINKEDIN.COM/IN/PETERWOODS/ SELECTED MATERIALSCOURTESY OF BRIAN VELLMURE BRIANVELLMURE.COM C op yr i g h t © 2 0 1 4 , S A S I n s t i t u t e I n c . A l l r i g h t s r es er v e d . sas.com