The document discusses dynamic programming, including its meaning, definition, uses, techniques, and examples. Dynamic programming refers to breaking large problems down into smaller subproblems, solving each subproblem only once, and storing the results for future use. This avoids recomputing the same subproblems repeatedly. Examples covered include matrix chain multiplication, the Fibonacci sequence, and optimal substructure. The document provides details on formulating and solving dynamic programming problems through recursive definitions and storing results in tables.