slide 1
Vitaly Shmatikov
CS 345
Programming Paradigms
slide 2
Reading Assignment
Mitchell, Chapter 2.1
slide 3
What Is a Programming Language?
Formal notation for specifying computations,
independent of a specific machine
• Example: a factorial function takes a single non-
negative integer argument and computes a positive
integer result
– Mathematically, written as fact: nat  nat
Set of imperative commands used to direct
computer to do something useful
• Print to an output device: printf(“hello worldn”);
– What mathematical function is “computed” by printf?
slide 4
Partial and Total Functions
Value of an expression may be undefined
• Undefined operation, e.g., division by zero
– 3/0 has no value
– Implementation may halt with error condition
• Nontermination
– f(x) = if x=0 then 1 else f(x-2)
– This is a partial function: not defined on all arguments
– Cannot be detected by inspecting expression (why?)
These two cases are “mathematically”
equivalent, but operationally different (why?)
Subtle: “undefined” is not the name of a function value …
slide 5
Partial and Total: Definitions
Total function f:AB is a subset f  AB with
•  xA, there is some yB with x,y  f (total)
• If x,y  f and x,z  f then y=z (single-valued)
Partial function f:AB is a subset f  AB with
• If x,y  f and x,z  f then y=z (single-valued)
Programs define partial functions for two reasons
• What are these reasons?
slide 6
Computability
Function f is computable if some program P
computes it
• For any input x, the computation P(x) halts with
output f(x)
• Partial recursive functions: partial functions (int to
int) that are computable
slide 7
Halting Problem
Ettore Bugatti: "I make my
cars to go, not to stop"
slide 8
Halting Function
Decide whether program halts on input
• Given program P and input x to P,
Halt(P,x) =
Fact: There is no program for Halt
yes if P(x) halts
no otherwise
Clarifications
• Assume program P requires one string input x
• Write P(x) for output of P when run in input x
• Program P is string input to Halt
slide 9
Unsolvability of the Halting Problem
Suppose P solves variant of halting problem
• On input Q, assume P(Q) =
Build program D
• D(Q) =
If D(D) halts, then D(D) runs forever
If D(D) runs forever, then D(D) halts
Contradiction! Thus P cannot exist.
yes if Q(Q) halts
no otherwise
run forever if Q(Q) halts
halt if Q(Q) runs forever
slide 10
Main Points About Computability
Some functions are computable, some are not
• Example: halting problem
Programming language implementation
• Can report error if program result is undefined due to
an undefined basic operation (e.g., division by zero)
• Cannot report error if program will not terminate
slide 11
Computation Rules
The factorial function type declaration does not
convey how the computation is to proceed
We also need a computation rule
• fact (0) = 1
• fact (n) = n * fact(n-1)
This notation is more computationally oriented
and can almost be executed by a machine
slide 12
Factorial Functions
C, C++, Java:
int fact (int n) { return (n == 0) ? 1 : n * fact (n-1); }
Scheme:
(define fact
(lambda (n) (if (= n 0) 1 (* n (fact (- n 1))))))
ML:
fun fact n = if n=0 then 1 else n*fact(n-1);
Haskell:
• fact :: Integer->Integer
• fact 0 = 1
• fact n = n*fact(n-1)
slide 13
Principal Paradigms
Imperative / Procedural
Functional / Applicative
Object-Oriented
Concurrent
Logic
Scripting
In reality, very few languages are “pure”
• Most combine features of different paradigms
slide 14
Where Do Paradigms Come From?
Paradigms emerge as the result of social
processes in which people develop ideas
and create principles and practices that embody
those ideas
• Thomas Kuhn. “The Structure of Scientific Revolutions.”
Programming paradigms are the result of people’s
ideas about how programs should be constructed
• … and formal linguistic mechanisms for expressing them
• … and software engineering principles and practices for
using the resulting programming language to solve
problems
slide 15
Imperative Paradigm
Imperative (procedural) programs consists of
actions to effect state change, principally through
assignment operations or side effects
• Fortran, Algol, Cobol, PL/I, Pascal, Modula-2, Ada, C
• Why does imperative programming dominate in
practice?
OO programming is not always imperative, but
most OO languages have been imperative
• Simula, Smalltalk, C++, Modula-3, Java
• Notable exception: CLOS (Common Lisp Object System)
slide 16
Functional and Logic Paradigms
Focuses on function evaluation; avoids updates,
assignment, mutable state, side effects
Not all functional languages are “pure”
• In practice, rely on non-pure functions for input/output
and some permit assignment-like operators
– E.g., (set! x 1) in Scheme
Logic programming is based on predicate logic
• Targeted at theorem-proving languages, automated
reasoning, database applications
• Recent trend: declarative programming
slide 17
Concurrent and Scripting Languages
Concurrent programming cuts across imperative,
object-oriented, and functional paradigms
Scripting is a very “high” level of programming
• Rapid development; glue together different programs
• Often dynamically typed, with only int, float, string, and
array as the data types; no user-defined types
• Weakly typed: a variable ‘x’ can be assigned a value of
any type at any time during execution
Very popular in Web development
• Especially scripting active Web pages
slide 18
Unifying Concepts
Unifying language concepts
• Types (both built-in and user-defined)
– Specify constraints on functions and data
– Static vs. dynamic typing
• Expressions (e.g., arithmetic, boolean, strings)
• Functions/procedures
• Commands
We will study how these are defined syntactically,
used semantically, and implemented pragmatically
slide 19
Design Choices
C: Efficient imperative programming with static types
C++: Object-oriented programming with static types and
ad hoc, subtype and parametric polymorphism
Java: Imperative, object-oriented, and concurrent
programming with static types and garbage collection
Scheme: Lexically scoped, applicative-style recursive
programming with dynamic types
Standard ML: Practical functional programming with strict
(eager) evaluation and polymorphic type inference
Haskell: Pure functional programming with non-strict (lazy)
evaluation.
slide 20
Abstraction and Modularization
Re-use, sharing, extension of code are critically
important in software engineering
Big idea: detect errors at compile-time, not when
program is executed
Type definitions and declarations
• Define intent for both functions/procedures and data
Abstract data types (ADT)
• Access to local data only via a well-defined interface
Lexical scope
slide 21
Static vs. Dynamic Typing
Static typing
• Common in compiled languages, considered “safer”
• Type of each variable determined at compile-time;
constrains the set of values it can hold at run-time
Dynamic typing
• Common in interpreted languages
• Types are associated with a variable at run-time; may
change dynamically to conform to the type of the value
currently referenced by the variable
• Type errors not detected until a piece of code is
executed
slide 22
Billion-Dollar Mistake
Failed launch of Ariane 5 rocket (1996)
• $500 million payload; $7 billion spent on development
Cause: software error in inertial reference system
• Re-used Ariane 4 code, but flight path was different
• 64-bit floating point number related to horizontal
velocity converted to 16-bit signed integer; the number
was larger than 32,767; inertial guidance crashed
slide 23
Program Correctness
Assert formal correctness statements about critical
parts of a program and reason effectively
• A program is intended to carry out a specific
computation, but a programmer can fail to adequately
address all data value ranges, input conditions, system
resource constraints, memory limitations, etc.
Language features and their interaction should be
clearly specified and understandable
• If you do not or can not clearly understand the
semantics of the language, your ability to accurately
predict the behavior of your program is limited
slide 24
Native-code compiler: produces machine code
• Compiled languages: Fortran, C, C++, SML …
Interpreter: translates into internal form and
immediately executes (read-eval-print loop)
• Interpreted languages: Scheme, Haskell, Python …
Byte-code compiler: produces portable bytecode,
which is executed on virtual machine (e.g., Java)
Hybrid approaches
• Source-to-source translation (early C++  Ccompile)
• Just-in-time Java compilers convert bytecode into native
machine code when first executed
Language Translation
slide 25
Language Compilation
Compiler: program that translates a source
language into a target language
• Target language is often, but not always, the
assembly language for a particular machine
C
compiler
C
source code x86
assembler
x86 ASM Pentium op codes
slide 26
Checks During Compilation
Syntactically invalid constructs
Invalid type conversions
• A value is used in the “wrong” context, e.g.,
assigning a float to an int
Static determination of type information is also
used to generate more efficient code
• Know what kind of values will be stored in a given
memory region during program execution
Some programmer logic errors
• Can be subtle: if (a = b) … instead of if (a == b) …
slide 27
Compilation Process
Lexical
analyzer
raw source
code text
Syntax
analyzer +
type checker
tokens ASTs Intermediate
code gen
Optimizer
IC ICopt Final code
gen
ASM
Assembler
Machine code
Syntax and static
type errors
Preprocessor
Source code with
preprocessor directives
slide 28
Phases of Compilation
Preprocessing: conditional macro text substitution
Lexical analysis: convert keywords, identifiers,
constants into a sequence of tokens
Syntactic analysis: check that token sequence is
syntactically correct
• Generate abstract syntax trees (AST), check types
Intermediate code generation: “walk” the ASTs
and generate intermediate code
• Apply optimizations to produce efficient code
Final code generation: produce machine code
slide 29
Language Interpretation
Read-eval-print loop
• Read in an expression, translate into internal form
• Evaluate internal form
– This requires an abstract machine and a “run-time” component
(usually a compiled program that runs on the native machine)
• Print the result of evaluation
• Loop back to read the next expression
REPL
interpreter
input
expression
Interpreter
runtime
result
slide 30
Virtual machine
runtime
Bytecode Compilation
Combine compilation with interpretation
• Idea: remove inefficiencies of read-eval-print loop
Bytecodes are conceptually similar to real machine
opcodes, but they represent compiled instructions
to a virtual machine instead of a real machine
• Source code statically compiled into a set of bytecodes
• Bytecode interpreter implements the virtual machine
• In what way are bytecodes “better” then real opcodes?
Bytecode
compiler
source
program
bytecodes
Bytecode
interpreter result
slide 31
Binding
Binding = association between an object and a
property of that object
• Example: a variable and its type
• Example: a variable and its value
A language element is bound to a property at
the time that property is defined for it
• Early binding takes place at compile-time
• Late binding takes place at run-time

02paradigms.ppt

  • 1.
    slide 1 Vitaly Shmatikov CS345 Programming Paradigms
  • 2.
  • 3.
    slide 3 What Isa Programming Language? Formal notation for specifying computations, independent of a specific machine • Example: a factorial function takes a single non- negative integer argument and computes a positive integer result – Mathematically, written as fact: nat  nat Set of imperative commands used to direct computer to do something useful • Print to an output device: printf(“hello worldn”); – What mathematical function is “computed” by printf?
  • 4.
    slide 4 Partial andTotal Functions Value of an expression may be undefined • Undefined operation, e.g., division by zero – 3/0 has no value – Implementation may halt with error condition • Nontermination – f(x) = if x=0 then 1 else f(x-2) – This is a partial function: not defined on all arguments – Cannot be detected by inspecting expression (why?) These two cases are “mathematically” equivalent, but operationally different (why?) Subtle: “undefined” is not the name of a function value …
  • 5.
    slide 5 Partial andTotal: Definitions Total function f:AB is a subset f  AB with •  xA, there is some yB with x,y  f (total) • If x,y  f and x,z  f then y=z (single-valued) Partial function f:AB is a subset f  AB with • If x,y  f and x,z  f then y=z (single-valued) Programs define partial functions for two reasons • What are these reasons?
  • 6.
    slide 6 Computability Function fis computable if some program P computes it • For any input x, the computation P(x) halts with output f(x) • Partial recursive functions: partial functions (int to int) that are computable
  • 7.
    slide 7 Halting Problem EttoreBugatti: "I make my cars to go, not to stop"
  • 8.
    slide 8 Halting Function Decidewhether program halts on input • Given program P and input x to P, Halt(P,x) = Fact: There is no program for Halt yes if P(x) halts no otherwise Clarifications • Assume program P requires one string input x • Write P(x) for output of P when run in input x • Program P is string input to Halt
  • 9.
    slide 9 Unsolvability ofthe Halting Problem Suppose P solves variant of halting problem • On input Q, assume P(Q) = Build program D • D(Q) = If D(D) halts, then D(D) runs forever If D(D) runs forever, then D(D) halts Contradiction! Thus P cannot exist. yes if Q(Q) halts no otherwise run forever if Q(Q) halts halt if Q(Q) runs forever
  • 10.
    slide 10 Main PointsAbout Computability Some functions are computable, some are not • Example: halting problem Programming language implementation • Can report error if program result is undefined due to an undefined basic operation (e.g., division by zero) • Cannot report error if program will not terminate
  • 11.
    slide 11 Computation Rules Thefactorial function type declaration does not convey how the computation is to proceed We also need a computation rule • fact (0) = 1 • fact (n) = n * fact(n-1) This notation is more computationally oriented and can almost be executed by a machine
  • 12.
    slide 12 Factorial Functions C,C++, Java: int fact (int n) { return (n == 0) ? 1 : n * fact (n-1); } Scheme: (define fact (lambda (n) (if (= n 0) 1 (* n (fact (- n 1)))))) ML: fun fact n = if n=0 then 1 else n*fact(n-1); Haskell: • fact :: Integer->Integer • fact 0 = 1 • fact n = n*fact(n-1)
  • 13.
    slide 13 Principal Paradigms Imperative/ Procedural Functional / Applicative Object-Oriented Concurrent Logic Scripting In reality, very few languages are “pure” • Most combine features of different paradigms
  • 14.
    slide 14 Where DoParadigms Come From? Paradigms emerge as the result of social processes in which people develop ideas and create principles and practices that embody those ideas • Thomas Kuhn. “The Structure of Scientific Revolutions.” Programming paradigms are the result of people’s ideas about how programs should be constructed • … and formal linguistic mechanisms for expressing them • … and software engineering principles and practices for using the resulting programming language to solve problems
  • 15.
    slide 15 Imperative Paradigm Imperative(procedural) programs consists of actions to effect state change, principally through assignment operations or side effects • Fortran, Algol, Cobol, PL/I, Pascal, Modula-2, Ada, C • Why does imperative programming dominate in practice? OO programming is not always imperative, but most OO languages have been imperative • Simula, Smalltalk, C++, Modula-3, Java • Notable exception: CLOS (Common Lisp Object System)
  • 16.
    slide 16 Functional andLogic Paradigms Focuses on function evaluation; avoids updates, assignment, mutable state, side effects Not all functional languages are “pure” • In practice, rely on non-pure functions for input/output and some permit assignment-like operators – E.g., (set! x 1) in Scheme Logic programming is based on predicate logic • Targeted at theorem-proving languages, automated reasoning, database applications • Recent trend: declarative programming
  • 17.
    slide 17 Concurrent andScripting Languages Concurrent programming cuts across imperative, object-oriented, and functional paradigms Scripting is a very “high” level of programming • Rapid development; glue together different programs • Often dynamically typed, with only int, float, string, and array as the data types; no user-defined types • Weakly typed: a variable ‘x’ can be assigned a value of any type at any time during execution Very popular in Web development • Especially scripting active Web pages
  • 18.
    slide 18 Unifying Concepts Unifyinglanguage concepts • Types (both built-in and user-defined) – Specify constraints on functions and data – Static vs. dynamic typing • Expressions (e.g., arithmetic, boolean, strings) • Functions/procedures • Commands We will study how these are defined syntactically, used semantically, and implemented pragmatically
  • 19.
    slide 19 Design Choices C:Efficient imperative programming with static types C++: Object-oriented programming with static types and ad hoc, subtype and parametric polymorphism Java: Imperative, object-oriented, and concurrent programming with static types and garbage collection Scheme: Lexically scoped, applicative-style recursive programming with dynamic types Standard ML: Practical functional programming with strict (eager) evaluation and polymorphic type inference Haskell: Pure functional programming with non-strict (lazy) evaluation.
  • 20.
    slide 20 Abstraction andModularization Re-use, sharing, extension of code are critically important in software engineering Big idea: detect errors at compile-time, not when program is executed Type definitions and declarations • Define intent for both functions/procedures and data Abstract data types (ADT) • Access to local data only via a well-defined interface Lexical scope
  • 21.
    slide 21 Static vs.Dynamic Typing Static typing • Common in compiled languages, considered “safer” • Type of each variable determined at compile-time; constrains the set of values it can hold at run-time Dynamic typing • Common in interpreted languages • Types are associated with a variable at run-time; may change dynamically to conform to the type of the value currently referenced by the variable • Type errors not detected until a piece of code is executed
  • 22.
    slide 22 Billion-Dollar Mistake Failedlaunch of Ariane 5 rocket (1996) • $500 million payload; $7 billion spent on development Cause: software error in inertial reference system • Re-used Ariane 4 code, but flight path was different • 64-bit floating point number related to horizontal velocity converted to 16-bit signed integer; the number was larger than 32,767; inertial guidance crashed
  • 23.
    slide 23 Program Correctness Assertformal correctness statements about critical parts of a program and reason effectively • A program is intended to carry out a specific computation, but a programmer can fail to adequately address all data value ranges, input conditions, system resource constraints, memory limitations, etc. Language features and their interaction should be clearly specified and understandable • If you do not or can not clearly understand the semantics of the language, your ability to accurately predict the behavior of your program is limited
  • 24.
    slide 24 Native-code compiler:produces machine code • Compiled languages: Fortran, C, C++, SML … Interpreter: translates into internal form and immediately executes (read-eval-print loop) • Interpreted languages: Scheme, Haskell, Python … Byte-code compiler: produces portable bytecode, which is executed on virtual machine (e.g., Java) Hybrid approaches • Source-to-source translation (early C++  Ccompile) • Just-in-time Java compilers convert bytecode into native machine code when first executed Language Translation
  • 25.
    slide 25 Language Compilation Compiler:program that translates a source language into a target language • Target language is often, but not always, the assembly language for a particular machine C compiler C source code x86 assembler x86 ASM Pentium op codes
  • 26.
    slide 26 Checks DuringCompilation Syntactically invalid constructs Invalid type conversions • A value is used in the “wrong” context, e.g., assigning a float to an int Static determination of type information is also used to generate more efficient code • Know what kind of values will be stored in a given memory region during program execution Some programmer logic errors • Can be subtle: if (a = b) … instead of if (a == b) …
  • 27.
    slide 27 Compilation Process Lexical analyzer rawsource code text Syntax analyzer + type checker tokens ASTs Intermediate code gen Optimizer IC ICopt Final code gen ASM Assembler Machine code Syntax and static type errors Preprocessor Source code with preprocessor directives
  • 28.
    slide 28 Phases ofCompilation Preprocessing: conditional macro text substitution Lexical analysis: convert keywords, identifiers, constants into a sequence of tokens Syntactic analysis: check that token sequence is syntactically correct • Generate abstract syntax trees (AST), check types Intermediate code generation: “walk” the ASTs and generate intermediate code • Apply optimizations to produce efficient code Final code generation: produce machine code
  • 29.
    slide 29 Language Interpretation Read-eval-printloop • Read in an expression, translate into internal form • Evaluate internal form – This requires an abstract machine and a “run-time” component (usually a compiled program that runs on the native machine) • Print the result of evaluation • Loop back to read the next expression REPL interpreter input expression Interpreter runtime result
  • 30.
    slide 30 Virtual machine runtime BytecodeCompilation Combine compilation with interpretation • Idea: remove inefficiencies of read-eval-print loop Bytecodes are conceptually similar to real machine opcodes, but they represent compiled instructions to a virtual machine instead of a real machine • Source code statically compiled into a set of bytecodes • Bytecode interpreter implements the virtual machine • In what way are bytecodes “better” then real opcodes? Bytecode compiler source program bytecodes Bytecode interpreter result
  • 31.
    slide 31 Binding Binding =association between an object and a property of that object • Example: a variable and its type • Example: a variable and its value A language element is bound to a property at the time that property is defined for it • Early binding takes place at compile-time • Late binding takes place at run-time