2

I would like to know how can I make my code more efficient with a for loop. I'm interested in making multiple subplots. In this example I'm using 4 but in reality I have 14.

So far, I've been copying/pasting the same block of code

df_A = df.loc[df['category'] == 'A'].copy()
df_B = df.loc[df['category'] == 'B'].copy()
df_C = df.loc[df['category'] == 'C'].copy()
df_D = df.loc[df['category'] == 'D'].copy()

dataframes = [df_A, df_B, df_C, df_D]

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 12), dpi=100)

fig.suptitle('Distributions per category in minutes', fontweight="bold", fontsize=15)

# category A
ax1.hist(df_A['time_spent'], color="darkcyan", edgecolor='black', bins=20)
ax1.set_title('Category A', fontsize=10)

# category B
ax2.hist(df_B['time_spent'], color="darkcyan", edgecolor='black', bins=20)
ax2.set_title('Category B', fontsize=10)

# category C
ax3.hist(df_C['time_spent'], color="darkcyan", edgecolor='black', bins=20)
ax3.set_title('Category C', fontsize=10)

# category D
ax4.hist(df_D['time_spent'], color="darkcyan", edgecolor='black', bins=20)
ax4.set_title('Category D', fontsize=10)

fig.tight_layout()
plt.show()

1 Answer 1

2

You could store the axes and conditions within lists and iterate over them to create your plots. Something like this would do the job:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from itertools import chain

df = pd.DataFrame(
    {
        "category": ["A", "B", "C", "D"] * 1000,
        "time_spent": np.random.rand(4000)
    }
)

# categories = ["A", "B", "C", "D"]
categories = sorted(list(df["category"].unique()))
fig, axes = plt.subplots(2, 2, figsize=(12, 12), dpi=100)
axes = list(chain.from_iterable(axes))

fig.suptitle('Distributions per category in minutes', fontweight="bold", fontsize=15)
for i in range(len(axes)):
  axes[i].hist(df.loc[df['category'] == categories[i], 'time_spent'], color="darkcyan", edgecolor='black', bins=20)
  axes[i].set_title(f'Category {categories[i]}', fontsize=10)
  
fig.tight_layout()
plt.show()
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.