I have a 2d array of numbers coming from a csv
this is just a example of the data shape
[[ 0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]
[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]
[60 61 62 63 64 65 66 67 68 69]
[70 71 72 73 74 75 76 77 78 79]
[80 81 82 83 84 85 86 87 88 89]
[90 91 92 93 94 95 96 97 98 99]]
Im learning to use numpy, my goal is to convert that 2d array into a 3d array of shape (10,2,4) for example
index 0
[[ 0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]]
index 1
[[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]]
index 2
[[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]]
index 3
[[60 61 62 63 64 65 66 67 68 69]
[70 71 72 73 74 75 76 77 78 79]]
index 4
[[80 81 82 83 84 85 86 87 88 89]
[90 91 92 93 94 95 96 97 98 99]]
I can do this by using a loop, but i wonder if there is a better way
also concatenating rows in one column would also work
my goal is to fit a keras model where a single sample is composed of multiple rows of a dataframe