My alternative to opening csv files is to use csv module of native python. You read them as a "file" and just extract the values that you need. I filter using the first column and keep only keep the equal index values from the concerned column. (which is thrid and index 2.)
import csv
energy_saved = []
with open(r"D:\test_stack.csv", newline="") as csvfile:
file = csv.reader(csvfile)
for row in file:
if row[0]=="merrytan":
energy_saved.append(row[2])
energy_saved = sum(map(int, energy_saved))
Now you have a list of just concerned values, and you can sum them afterwards.
Edit - So, I just realized that I left out the time part of your request completely lol. Here's the update.
import csv
my_dict = {}
with open(r"D:\test_stack.csv", newline="") as file:
for row in csv.reader(file):
if row[0]=="merrytan":
my_dict[row[1]] = my_dict.get(row[1], 0) + int(row[2])
So, we need to get the date column of the file as well. We need to make a presentation of two "rows" but when Pandas has been prohibited, we will go to dictionary with date as keys and energy as values.
But your date column has repeated values (regardless intended or else) and Dictionaries require keys to be unique. So, we use a loop. You add one date value after another as key and corresponding energy as value to the new dictionary, but when it is already present, you will sum with the existing value instead.