2

I have a dataframe thats rows are indexed properly 1:n but the columns do not have an integer index. the first row represents frequencies, which are not actual integers allowing for easy indexing.

heres what im looking at:

index 3.14 3.28 3.42 3.56
0 data data data data
1 data data data data
2 data data data data
3 data data data data
4 data data data data

heres what i want:

index 0 1 2 3
0 3.14 3.28 3.42 3.56
1 data data data data
2 data data data data
3 data data data data
4 data data data data
5 data data data data

I have this ready, but need to find an insert function that also will alllow me to convert the array into a df

 ### df size = [20000, 100]
 index_row = np.linspace(1,100,100)
 index_row = index_row.reshape(1,100)
0

1 Answer 1

1

You can use reset_index after tranposing your df.

Let's load a sample of your data:

from io import StringIO
data = StringIO(
"""
    3.14    3.28    3.42    3.56
0   data    data    data    data
1   data    data    data    data
2   data    data    data    data
3   data    data    data    data
4   data    data    data    data
""")
df = pd.read_csv(data,delim_whitespace=True, index_col=0)

Then use this

df.transpose().reset_index(drop = False).transpose().reset_index(drop = True)

to produce this


           0       1       2       3
0       3.14    3.28    3.42    3.56
1       data    data    data    data
2       data    data    data    data
3       data    data    data    data
4       data    data    data    data
5       data    data    data    data
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.