0

I would like to create a plot of my linear regression model showing bike sales for each year summed up at one point, and not like now that there are two points separately.

This is my code:

from sklearn.linear_model import LinearRegression
from sklearn import datasets, linear_model

## Wzrost lub maleje zakup rowerow
## (Purchase of bicycles increases or decreases)
plot1 = df.groupby('Year')['Product_Category'].value_counts().rename('count').reset_index()

x = plot1['Year'].values.reshape(-1, 1)
y = plot1['count'].values.reshape(-1, 1)

# plot #
## linear ##
regr = linear_model.LinearRegression()
regr.fit(x, y)
y_pred = regr.predict(x_test)

#plot#
plt.scatter(x, y,  color='black')
plt.plot(x, y, color='blue', linewidth=3)

This is my plot:

enter image description here

2
  • so you want to show sales on y axis & year on x axis ?? Commented Jan 12, 2021 at 15:58
  • Yes excatly, but i dont know why I have two points each year instead of one accumulated one Commented Jan 12, 2021 at 16:21

1 Answer 1

1

As what I can understand from your example, this maybe a solution, replace value_counts by count.

Example data:

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame({'Year': [ 2019, 2019, 2020, 2021], 'Product_Category': ['a', 'b', 'c', 'd']})
print(df)
   Year Product_Category
0  2019                a
1  2019                b
2  2020                c
3  2021                d

The count will return:

plot1 = df.groupby('Year')['Product_Category'].count().rename('count').reset_index()
print(plot1)

  Year  count
0  2019      2
1  2020      1
2  2021      1


plot1 = df.groupby('Year')['Product_Category'].count().rename('count').reset_index()
#x,y#
x = plot1['Year'].values.reshape(-1, 1)
y = plot1['count'].values.reshape(-1, 1)
# plot #

#plot#
plt.scatter(x, y,  color='black')
plt.plot(x, y, color='blue', linewidth=3)

enter image description here

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.