New to Python. Would like to convert below list to pandas dataframe with fixed number of columns
[['Teja'], ['22', 'Male'], ['Viha'], ['Female'], ['Male'], ['Vinay'], ['32', 'Female'], ['Sowmya']]
New to Python. Would like to convert below list to pandas dataframe with fixed number of columns
[['Teja'], ['22', 'Male'], ['Viha'], ['Female'], ['Male'], ['Vinay'], ['32', 'Female'], ['Sowmya']]
Hope this is what you are looking at.
import pandas as pd
a = [
["Teja"],
["22", "Male"],
["Viha"],
["Female"],
["Male"],
["Vinay"],
["32", "Female"],
["Sowmya"],
]
name = []
age = []
gender = []
for item in a:
if "Male" in item or "Female" in item:
if item[0].isnumeric():
age.append(item[0])
gender.append(item[1])
else:
age.append("None")
gender.append(item[0])
continue
name.append(item[0])
data = {"name": name, "age": age, "gender": gender}
print(name, age, gender)
df = pd.DataFrame(data)
print(df)
Create a dictionary like this:
d = {
'name' : ['Teja', 'Viha', 'Vinay', 'Sowmya'],
'age' : [22, None, None, 32],
'gender': ['Male', 'Female', 'Male', 'Female']
}
my_dataframe = pandas.DataFrame(d)
print(my_dataframe)
The output would be like:
name age gender
0 Teja 22.0 Male
1 Viha NaN Female
2 Vinay NaN Male
3 Sowmya 32.0 Female