Adapting from the pandas documentation
import pandas as pd
import numpy as np
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index)
df
first bar baz foo qux \
second one two one two one two one
A 0.033707 0.681401 -0.999368 -0.015942 -0.417583 -0.233212 -0.072706
B 1.140347 -0.759089 -0.278175 -0.848010 -0.642824 -0.902858 0.117839
C -0.370039 -0.425074 -0.404409 -1.090386 -0.985019 -0.971178 0.924350
first
second two
A -0.850698
B 0.377443
C -1.129125
Now check
df.columns.tolist()
[('bar', 'one'),
('bar', 'two'),
('baz', 'one'),
('baz', 'two'),
('foo', 'one'),
('foo', 'two'),
('qux', 'one'),
('qux', 'two')]
rearrange to your liking and use .loc
df.loc[:,[('bar', 'one'),
('baz', 'one'),
('bar', 'two'),
('foo', 'one'),
('foo', 'two'),
('qux', 'two'),
('baz', 'two'),
('qux', 'one')
] ]
first bar baz bar foo qux baz \
second one one two one two two two
A 0.033707 -0.999368 0.681401 -0.417583 -0.233212 -0.850698 -0.015942
B 1.140347 -0.278175 -0.759089 -0.642824 -0.902858 0.377443 -0.848010
C -0.370039 -0.404409 -0.425074 -0.985019 -0.971178 -1.129125 -1.090386
first qux
second one
A -0.072706
B 0.117839
C 0.924350
This approach should give you the maximum amount of control.
Adapting this approach to your data frame, it looks like this:
df = df.unstack().swaplevel(1,0, axis=1).loc[:, [('chair', 'metric2'),
('chair', 'metric3'), ('chair', 'metric1'),('table', 'metric2'),
('table', 'metric3'), ('table', 'metric1')]]