1

Here's my code; first I define my u-net model as a class of nn.Module like the following code:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils


class unet(nn.Module):
def __init__(self):
    super(unet, self).__init__()
    self.conv1 = nn.Conv3d(1, 32, 3, padding=1)
    self.conv1_1 = nn.Conv3d(32, 32, 3, padding=1)
    self.conv2 = nn.Conv3d(32, 64, 3, padding=1)
    self.conv2_2 = nn.Conv3d(64, 64, 3, padding=1)
    self.conv3 = nn.Conv3d(64, 128, 3, padding=1)
    self.conv3_3 = nn.Conv3d(128, 128, 3, padding=1)
    self.convT1 = nn.ConvTranspose3d(128, 64, 3, stride=(2,2,2), padding=1, output_padding=1)
    self.conv4 = nn.Conv3d(128, 64, 3, padding=1)
    self.conv4_4 = nn.Conv3d(64, 64, 3, padding=1)
    self.convT2 = nn.ConvTranspose3d(64, 32, 3,stride=(2,2,2), padding=1, output_padding=1)
    self.conv5 = nn.Conv3d(64, 32, 3, padding=1)
    self.conv5_5 = nn.Conv3d(32, 32, 3, padding=1)
    self.conv6 = nn.Conv3d(32, 1 ,3, padding=1)
    
    
def forward(self, inputs):
    conv1 = F.relu(self.conv1(inputs))
    conv1 = F.relu(self.conv1_1(conv1))
    pool1 = F.max_pool3d(conv1, 2)
    
    conv2 = F.relu(self.conv2(pool1))
    conv2 = F.relu(self.conv2_2(conv2))
    pool2 = F.max_pool3d(conv2, 2)        
    conv3 = F.relu(self.conv3(pool2))
    conv3 = F.relu(self.conv3_3(conv3))        
    conv3 = self.convT1(conv3)
    
    up1 = torch.cat((conv3, conv2), dim=1)
    conv4 = F.relu(self.conv4(up1))
    conv4 = F.relu(self.conv4_4(conv4))
    
    conv4 = self.convT2(conv4)
    up2 = torch.cat((conv4, conv1), dim=1)
    conv5 = F.relu(self.conv5(up2))
    conv5 = F.relu(self.conv5_5(conv5))
    
    conv6 = F.relu(self.conv6(conv5))
    
    return conv6

Then I run my unet like the following code. note that when defining the module I set it to the cuda. I also set the input data and its labels to the cuda.

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = unet().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
loss_fn = nn.MSELoss()
datasets = torch.utils.data.TensorDataset(data_recon, data_truth)
train_loader = DataLoader(datasets, batch_size=2, shuffle=True)

def training_loop(n_epochs, optimizer, model, loss_fn, train_loader):
    for epoch in range(1, n_epochs + 1):
        loss_train = 0
        for imgs, labels in train_loader:
            imgs.to(device)
            labels.to(device)
            outputs = model(imgs)
            loss = loss_fn(outputs, labels)
        
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        
            loss_train += loss.item()
    
    
        print('{} Epoch {}, Training loss    {}'.format(datetime.datetime.now(), epoch, float(loss_train)))
    
training_loop(50, optimizer, model, loss_fn, train_loader)

But I get this error:

RuntimeError                              Traceback (most recent call last) <ipython-input-31-573c18dee5b1> in <module>
----> 1 training_loop(50, optimizer, model, loss_fn, train_loader)

<ipython-input-30-81cea9bcd2ec> in training_loop(n_epochs, optimizer, model, loss_fn, train_loader)
      5             imgs.to(device)
      6             labels.to(device)
----> 7             outputs = model(imgs)
      8             loss = loss_fn(outputs, labels)
      9 

/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    491             result = self._slow_forward(*input, **kwargs)
    492         else:
--> 493             result = self.forward(*input, **kwargs)
    494         for hook in self._forward_hooks.values():
    495             hook_result = hook(self, input, result)

<ipython-input-15-5dac9d28f19c> in forward(self, inputs)
     18 
     19     def forward(self, inputs):
---> 20         conv1 = F.relu(self.conv1(inputs))
     21         conv1 = F.relu(self.conv1_1(conv1))
     22         pool1 = F.max_pool3d(conv1, 2)

/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    491             result = self._slow_forward(*input, **kwargs)
    492         else:
--> 493             result = self.forward(*input, **kwargs)
    494         for hook in self._forward_hooks.values():
    495             hook_result = hook(self, input, result)

/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/conv.py in forward(self, input)
    474                             self.dilation, self.groups)
    475         return F.conv3d(input, self.weight, self.bias, self.stride,
--> 476                         self.padding, self.dilation, self.groups)
    477 
    478 

RuntimeError: Expected object of backend CPU but got backend CUDA for argument #2 'weight'

How to solve this issue?

1 Answer 1

1

The problem is with this line

imgs.to(device)
labels.to(device)

.to(device) returns a new Tensor and won't change imgs and labels. So the cuda error is valid. You can simply fix it by assigning new tensor as follows:

imgs = imgs.to(device)
labels = labels.to(device)
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.