I'm using tensorflow 1.8.0, python 3.6.5. The data is iris data set. Here is the code:
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
X = iris['data']
y = iris['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
input_train=tf.estimator.inputs.numpy_input_fn(x=X_train,
y=y_train, num_epochs=100, shuffle=False)
classifier_model = tf.estimator.DNNClassifier(hidden_units=[10,
20, 10], n_classes=3, feature_columns=??)
Here is my problem, how do I setup the feature_columns for a numpy matrix?
If I covert the X and y to pandas.DataFrame, I can use the following code for the feature_columns, and it works in the DNNClassifier model.
features = X.columns
feature_columns = [tf.feature_column.numeric_column(key=key) for key in features]