1
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 1 1 1 0 0 0 0 0 1 1 0 0 3 3 0 0 0 4 4 0 0 0 5 5 5 5 0 0 2 2 2 2 2 0 2 2 2 2 2 0 0 0 6 6 6 6 6 6 0 6 6 6 6]
 [0 1 1 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 4 4 0 0 5 5 5 5 5 5 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 6 6 6 6 6 6 6 6 6 6 6]
 [1 1 1 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 4 4 0 5 5 5 0 0 5 5 5 0 2 2 0 0 2 2 0 0 0 2 2 0 0 6 6 0 0 6 6 6 0 0 6 6]
 [1 1 1 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 4 4 0 5 5 5 5 0 0 0 0 0 2 2 0 2 2 2 0 0 0 2 2 2 0 6 6 0 0 0 6 6 0 0 6 6]
 [1 1 1 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 4 4 0 0 5 5 5 5 5 5 0 0 2 2 0 2 2 2 0 0 0 2 2 2 0 6 6 0 0 0 6 6 0 0 6 6]
 [0 1 1 0 0 0 0 0 0 7 0 0 0 3 3 0 0 0 4 4 0 0 0 0 5 5 5 5 5 0 2 2 0 2 2 2 0 0 0 2 2 2 0 6 6 0 0 0 6 6 0 0 6 6]]

As a first step I want the pixels different than 0 to be white and the 0 pixels to be black.what i did to transform the none 0 values all to 1:

binary_transform = np.array(labels).astype(bool).astype(int)

and it worked then i want to transform the list of arrays of 1s and 0s to image, what i tried:

from PIL import Image

img = Image.fromarray(binary_transform, '1')
img.save('image.png')

the docs for Image.fromarray can be found here https://pillow.readthedocs.io/en/3.1.x/reference/Image.html

It didn't work then i tried the following:

import png

png.from_array(binary_transform, 'L').save('image.png')

Referring to the docs 'L' is for grayscale while i want binary but i didn't see a binary option, the docs https://pythonhosted.org/pypng/png.html

and i got this error ValueError: bitdepth (64) must be a positive integer <= 16

3 Answers 3

3

Though you don't say that explicitly, the fact that you said "As a first step...", makes me think you are heading towards a greyscale palette image:

import numpy as np
from PIL import Image
labels=[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,1,1,1,0,0,0,0,0,1,1,0,0,3,3,0,0,0,4,4,0,0,0,5,5,5,5,0,0,2,2,2,2,2,0,2,2,2,2,2,0,0,0,6,6,6,6,6,6,0,6,6,6,6],
 [0,1,1,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0,4,4,0,0,5,5,5,5,5,5,0,2,2,2,2,2,2,2,2,2,2,2,2,0,0,6,6,6,6,6,6,6,6,6,6,6],
 [1,1,1,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0,4,4,0,5,5,5,0,0,5,5,5,0,2,2,0,0,2,2,0,0,0,2,2,0,0,6,6,0,0,6,6,6,0,0,6,6],
 [1,1,1,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0,4,4,0,5,5,5,5,0,0,0,0,0,2,2,0,2,2,2,0,0,0,2,2,2,0,6,6,0,0,0,6,6,0,0,6,6],
 [1,1,1,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0,4,4,0,0,5,5,5,5,5,5,0,0,2,2,0,2,2,2,0,0,0,2,2,2,0,6,6,0,0,0,6,6,0,0,6,6],
 [0,1,1,0,0,0,0,0,0,7,0,0,0,3,3,0,0,0,4,4,0,0,0,0,5,5,5,5,5,0,2,2,0,2,2,2,0,0,0,2,2,2,0,6,6,0,0,0,6,6,0,0,6,6]]
binary_transform = np.array(labels).astype(np.uint8)
img = Image.fromarray(binary_transform, 'P')
img.save('image.png')

enter image description here

Note that I have resized and contrast-stretched the image for display purposes.

If you really only want a true binary, black and white image, use:

binary_transform = np.array(labels).astype(np.uint8)
binary_transform[binary_transform>0] = 255
img = Image.fromarray(binary_transform, 'L')
img.save('image.png')
Sign up to request clarification or add additional context in comments.

2 Comments

Actually no it's not a grayscale image, it's the output of the connected components function applied to a grayscale image(cv2.connectedComponents)
I guessed that it was Connected Components labelling :-)
3

If I understand you right, you want the image to appear binary, i.e., just black and white, no grey. If that's the case, OpenCV is your friend:

import cv2
import numpy as np

binary_transform = np.array(labels).astype(np.uint8)

_,thresh_img = cv2.threshold(binary_transform, 0, 255, cv2.THRESH_BINARY)

cv2.imwrite('image.png', thresh_img)

Of course PIL will work as well, you just need to adjust your non-zero values.

binary_transform = np.array(labels).astype(np.uint8)
binary_transform[binary_transform > 0] = 255

img = Image.fromarray(binary_transform, 'L')
img.save('image.png')

enter image description here

1 Comment

Cool, and +1 for doing it two different ways!
0

The other answers (all good!) use OpenCV or PIL. Here's how you could create the image using numpngw, a small library that I wrote to create PNG files from numpy arrays.

First, here's my data for the example:

In [173]: x
Out[173]: 
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 1, 0, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 2, 2, 2, 2, 2, 0],
 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 2, 2, 2, 2, 2, 0],
 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 2, 2, 2, 2, 2, 0],
 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 2, 2, 2, 2, 2, 0],
 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 2, 2, 2, 2, 2, 0],
 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 2, 2, 2, 2, 2, 0],
 [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 2, 2, 2, 2, 2, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

Create the image using numpngw.write_png():

In [174]: import numpy as np

In [175]: import numpngw

In [176]: numpngw.write_png("foo.png", (np.array(x) > 0).astype(np.uint8), bitdepth=1)

Here's the image: image

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.