4

I have a multindex DataFrame, df:

arrays = [['bar', 'bar', 'baz', 'baz', 'baz', 'baz', 'foo', 'foo'],
          ['one', 'two', 'one', 'two', 'three', 'four', 'one', 'two']]

df = pd.DataFrame(np.ones([8, 4]), index=arrays)

which looks like:

             0    1    2    3
bar one    1.0  1.0  1.0  1.0
    two    1.0  1.0  1.0  1.0
baz one    1.0  1.0  1.0  1.0
    two    1.0  1.0  1.0  1.0
    three  1.0  1.0  1.0  1.0
    four   1.0  1.0  1.0  1.0
foo one    1.0  1.0  1.0  1.0
    two    1.0  1.0  1.0  1.0

I now need to sort the 'baz' sub-level into a new order, to create something that looks like df_end:

arrays_end = [['bar', 'bar', 'baz', 'baz', 'baz', 'baz', 'foo', 'foo'],
              ['one', 'two', 'two', 'four', 'three', 'one', 'one', 'two']]

df_end = pd.DataFrame(np.ones([8, 4]), index=arrays_end)

which looks like:

             0    1    2    3
bar one    1.0  1.0  1.0  1.0
    two    1.0  1.0  1.0  1.0
baz two    1.0  1.0  1.0  1.0
    four   1.0  1.0  1.0  1.0
    three  1.0  1.0  1.0  1.0
    one    1.0  1.0  1.0  1.0
foo one    1.0  1.0  1.0  1.0
    two    1.0  1.0  1.0  1.0

I thought that I might be able to reindex the baz row:

new_index = ['two','four','three','one']

df.loc['baz'].reindex(new_index)

Which gives:

         0    1    2    3
two    1.0  1.0  1.0  1.0
four   1.0  1.0  1.0  1.0
three  1.0  1.0  1.0  1.0
one    1.0  1.0  1.0  1.0

...and insert these values back into the original DataFrame:

df.loc['baz'] = df.loc['baz'].reindex(new_index)

But the result is:

             0    1    2    3
bar one    1.0  1.0  1.0  1.0
    two    1.0  1.0  1.0  1.0
baz one    NaN  NaN  NaN  NaN
    two    NaN  NaN  NaN  NaN
    three  NaN  NaN  NaN  NaN
    four   NaN  NaN  NaN  NaN
foo one    1.0  1.0  1.0  1.0
    two    1.0  1.0  1.0  1.0

Which is not what I'm looking for! So my question is how I can use new_index to reorder the rows in the baz index. Any advice would be greatly appreciated.

1

2 Answers 2

3

Edit: (to fit the desired layout)

arrays = [['bar', 'bar', 'baz', 'baz', 'baz', 'baz', 'foo', 'foo'],
          ['one', 'two', 'one', 'two', 'three', 'four', 'one', 'two']]

df = pd.DataFrame(np.arange(32).reshape([8, 4]), index=arrays)
new_baz_index = [('baz', i) for i in ['two','four','three','one']]
index = df.index.values.copy()
index[df.index.get_loc('baz')] = new_baz_index
df.reindex(index)

df.index.get_loc('baz') will get the location of the baz part as a slice object and we replace the part there only.

enter image description here

Sign up to request clarification or add additional context in comments.

2 Comments

Thanks for your incredibly quick and helpful reply Tai. This is excellent :)
@tomp no problem. Glad it helps.
1

Update :-)

pd.concat([df[df.index.get_level_values(level=0)!='baz'],df.reindex(list(zip(['baz']*4,['two','four','three','one'])))])
Out[1156]: 
             0    1    2    3
bar one    1.0  1.0  1.0  1.0
    two    1.0  1.0  1.0  1.0
foo one    1.0  1.0  1.0  1.0
    two    1.0  1.0  1.0  1.0
baz two    1.0  1.0  1.0  1.0
    four   1.0  1.0  1.0  1.0
    three  1.0  1.0  1.0  1.0
    one    1.0  1.0  1.0  1.0

1 Comment

Hi again Wen, and thanks for looking at this! The df in your answer matches the input df in my question, rather than the output. Is there a missing step?

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.