I am working with a dataframe containing data of 1 week.
y
ds
2017-08-31 10:15:00 1.000000
2017-08-31 10:20:00 1.049107
2017-08-31 10:25:00 1.098214
...
2017-09-07 10:05:00 99.901786
2017-09-07 10:10:00 99.950893
2017-09-07 10:15:00 100.000000
I create a new index by combining the weekday and time i.e.
y
dayIndex
4 - 10:15 1.000000
4 - 10:20 1.049107
4 - 10:25 1.098214
...
4 - 10:05 99.901786
4 - 10:10 99.950893
4 - 10:15 100.000000
The plot of this data is the following:
The plot is correct as the labels reflect the data in the dataframe. However, when zooming in, the labels do not seem correct as they no longer correspond to their original values:
What is causing this behavior?
Here is the code to reproduce this:
import datetime
import numpy as np
import pandas as pd
dtnow = datetime.datetime.now()
dindex = pd.date_range(dtnow , dtnow + datetime.timedelta(7), freq='5T')
data = np.linspace(1,100, num=len(dindex))
df = pd.DataFrame({'ds': dindex, 'y': data})
df = df.set_index('ds')
df = df.resample('5T').mean()
df['dayIndex'] = df.index.strftime('%w - %H:%M')
df= df.set_index('dayIndex')
df.plot()
