3

I have a folder trip_data contains many csv file with date, which looks like this:

trip_data/
├── df_trip_20140803_1.csv
├── df_trip_20140803_2.csv
├── df_trip_20140803_3.csv
├── df_trip_20140803_4.csv
├── df_trip_20140803_5.csv
├── df_trip_20140803_6.csv
├── df_trip_20140804_1.csv
├── df_trip_20140804_2.csv
├── df_trip_20140804_3.csv
├── df_trip_20140804_4.csv
├── df_trip_20140804_5.csv
├── df_trip_20140804_6.csv
├── df_trip_20140805_1.csv
├── df_trip_20140805_2.csv
├── df_trip_20140805_3.csv
├── df_trip_20140805_4.csv
├── df_trip_20140805_5.csv
├── df_trip_20140805_6.csv
├── df_trip_20140806_1.csv
├── df_trip_20140806_2.csv
├── df_trip_20140806_3.csv
├── df_trip_20140806_4.csv

Now I want to load all these file separately by date with python pandas, means 4 DataFrame df_traip_20140803, df_traip_20140804, df_traip_20140805, df_traip_20140806

My code looks like this:

days = [20140803,20140804,20140805,20140806]

for day in days:
    ## Locate to the path
    path ='./trip_data/df_trip_%d*.csv' % day
    df = pd.read_csv(path, header=None, nrows=10,
                        names=['ID','lat','lon','status','timestamp']) 

Which could not get the correct result. How can I do this?

0

1 Answer 1

5

I would collect all those CSV into dictionary of DataFrames with the following structure:

df['20140803'] - DF containing concatenated data belonging to all df_trip_20140803_*.csv CSV files.

Solution:

import os
import re
import glob
import pandas as pd

fpattern = r'D:\temp\.data\41444939\df_trip_{}_{}.csv'
files = glob.glob(fpattern.format('*','*'))

dates = sorted(set([re.split(r'_(\d{8})_(\d+)\.(\w+)', f)[1] for f in files]))

dfs = {}
for d in dates:
    dfs[d] = pd.concat((pd.read_csv(f) for f in glob.glob(fpattern.format(d, '*'))), ignore_index=True)

Test:

In [95]: dfs.keys()
Out[95]: dict_keys(['20140804', '20140805', '20140803', '20140806'])

In [96]: dfs['20140803']
Out[96]:
    a  b  c
0   0  0  7
1   3  7  1
2   9  7  3
3   7  4  7
4   5  2  4
5   0  0  4
6   7  2  2
7   8  4  1
8   0  8  3
9   3  9  0
10  7  3  9
11  1  9  8
12  6  7  2
13  3  8  1
14  3  4  5
15  0  9  2
16  5  8  7
17  8  5  4
18  2  0  2
19  9  6  6
20  6  6  6
21  2  6  9
22  1  0  8
23  3  1  1
24  7  4  2
25  7  4  2
26  8  3  7
27  7  3  2
28  1  7  7
29  3  6  5

Setup:

fn = r'D:\temp\.data\41444939\a.txt'
base_dir = r'D:\temp\.data\41444939'
files = open(fn).read().splitlines()
for f in files:
    pd.DataFrame(np.random.randint(0, 10, (5, 3)), columns=list('abc')) \
      .to_csv(os.path.join(base_dir, f), index=False)
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.