A structured array approach:
define a dtype according to your column specs:
In [460]: dt=np.dtype('O,U10,f,i')
In [461]: from datetime import datetime
Initalize an empty array, with 3 elements (not 3x4)
In [462]: A = np.empty((3,), dtype=dt)
In [463]: A
Out[463]:
array([(None, '', 0.0, 0), (None, '', 0.0, 0), (None, '', 0.0, 0)],
dtype=[('f0', 'O'), ('f1', '<U10'), ('f2', '<f4'), ('f3', '<i4')])
fill in some values - by field name (not column number)
In [464]: A['f1']=['one','two','three']
In [465]: A['f0'][0]=datetime(2016, 10, 1, 1, 0)
In [467]: A['f2']=np.arange(3)
In [468]: A
Out[468]:
array([(datetime.datetime(2016, 10, 1, 1, 0), 'one', 0.0, 0),
(None, 'two', 1.0, 0),
(None, 'three', 2.0, 0)],
dtype=[('f0', 'O'), ('f1', '<U10'), ('f2', '<f4'), ('f3', '<i4')])
View on element of this array:
In [469]: A[0]
Out[469]: (datetime.datetime(2016, 10, 1, 1, 0), 'one', 0.0, 0)
I chose to make the 1st field object dtype, so it can hold a datetime object - which isn't a number or string.
np.datetime64 stores a date as a float, and provides a lot of functionality that datetime objects don't:
In [484]: dt1=np.dtype('datetime64[s],U10,f,i')
In [485]: A1 = np.empty((3,), dtype=dt1)
In [486]: A1['f0']=datetime(2016, 10, 1, 1, 0)
In [487]: A1['f3']=np.arange(3)
In [488]: A1
Out[488]:
array([(datetime.datetime(2016, 10, 1, 1, 0), '', 0.0, 0),
(datetime.datetime(2016, 10, 1, 1, 0), '', 0.0, 1),
(datetime.datetime(2016, 10, 1, 1, 0), '', 0.0, 2)],
dtype=[('f0', '<M8[s]'), ('f1', '<U10'), ('f2', '<f4'), ('f3', '<i4')])
A third approach is to make the whole array object dtype. That's effectively a glorified list. Many operations resort to plain iteration, or just aren't implemented. It's more general but you loose a lot of the power of normal numeric arrays.
Structured arrayscould be one option.