If I make 2 arrays with the shapes you describe, I get an error
In [1856]: norm_array=np.ones((20,30))
In [1857]: reference=np.ones((20,0))
In [1858]: norm_array-reference
...
ValueError: operands could not be broadcast together with shapes (20,30) (20,0)
But it's different from yours. But if I change the shape of reference, the error messages match.
In [1859]: reference=np.ones((20,))
In [1860]: norm_array-reference
...
ValueError: operands could not be broadcast together with shapes (20,30) (20,)
So your (20,0) is wrong. I don't know if you mistyped something or not.
But if I make reference 2d with 1 in the last dimension, broadcasting works, producing a difference that matches (20,30) in shape:
In [1861]: reference=np.ones((20,1))
In [1862]: norm_array-reference
If reference = np.zeros((20,)), then I could use reference[:,None] to add that singleton last dimension.
If reference is (20,), you can't do reference[0][0]. reference[0][0] only works with 2d arrays with at least 1 in the last dim. reference[0,0] is the preferred way of indexing a single element of a 2d array.
So far this is normal array dimensions and broadcasting; something you'll learn with use.
===============
I'm puzzled about the shape of out. If it is (20,), how does norm_array end up as (20,30). out must consist of 20 arrays or lists, each of which has 30 elements.
If out was 2d array, we could normalize without iteration
In [1869]: out=np.arange(12).reshape(3,4)
with the list comprehension:
In [1872]: [out[i]/np.sum(out[i]) for i in range(out.shape[0])]
Out[1872]:
[array([ 0. , 0.16666667, 0.33333333, 0.5 ]),
array([ 0.18181818, 0.22727273, 0.27272727, 0.31818182]),
array([ 0.21052632, 0.23684211, 0.26315789, 0.28947368])]
In [1873]: np.array(_) # and to array
Out[1873]:
array([[ 0. , 0.16666667, 0.33333333, 0.5 ],
[ 0.18181818, 0.22727273, 0.27272727, 0.31818182],
[ 0.21052632, 0.23684211, 0.26315789, 0.28947368]])
Instead take row sums, and tell it to keep it 2d for ease of further use
In [1876]: out.sum(axis=1,keepdims=True)
Out[1876]:
array([[ 6],
[22],
[38]])
now divide
In [1877]: out/out.sum(axis=1,keepdims=True)
Out[1877]:
array([[ 0. , 0.16666667, 0.33333333, 0.5 ],
[ 0.18181818, 0.22727273, 0.27272727, 0.31818182],
[ 0.21052632, 0.23684211, 0.26315789, 0.28947368]])