12

I'm trying to create a DataFrame from my JSON output which looks like as shown below.

{  
   "tags":[  
      {  
     "stats":{  
        "rawCount":9
     },
     "name":"Temperature1",
     "results":[  
        {  
           "attributes":{  
              "Location":[  
                 "3rd Floor"
              ],
              "Sensor-Serial-Number":[  
                 "PT100"
              ]
           },
           "values":[  
              [  
                 1460958592800,
                 24.2,
                 3
              ],
              [  
                 1460958602800,
                 24.1,
                 1
              ],
              [  
                 1460958612800,
                 23.9,
                 1
              ],
              [  
                 1460958622800,
                 24.2,
                 1
              ],
              [  
                 1460958632800,
                 24.5,
                 1
              ],
              [  
                 1460958642800,
                 24.9,
                 1
              ],
              [  
                 1460958652800,
                 24.6,
                 1
              ],
              [  
                 1460958662800,
                 24.7,
                 1
              ],
              [  
                 1460958672800,
                 24.7,
                 1
              ]
           ],
           "groups":[  
              {  
                 "type":"number",
                 "name":"type"
              }
           ]
        }
     ]
      }
   ]
}

I only require values, which I need to convert into a DataFrame as shown in the below image.

Timeseries data

0

2 Answers 2

18

try this to pull out only a list of values from your json

import json
import ast
import pandas as pd
mystr = """
{'tags': [{'name': 'Temperature1',
  'results': [{'attributes': {'Location': ['3rd Floor'],
  'Sensor-Serial-Number': ['PT100']},
  'groups': [{'name': 'type', 'type': 'number'}],
  'values': [[1460958592800, 24.2, 3],
  [1460958602800, 24.1, 1],
  [1460958612800, 23.9, 1],
  [1460958622800, 24.2, 1],
  [1460958632800, 24.5, 1],
  [1460958642800, 24.9, 1],
  [1460958652800, 24.6, 1],
  [1460958662800, 24.7, 1],
  [1460958672800, 24.7, 1]]}],
 'stats': {'rawCount': 9}}]}
"""
val = ast.literal_eval(mystr)
val1 = json.loads(json.dumps(val))
val2 = val1['tags'][0]['results'][0]['values']
print pd.DataFrame(val2, columns=["time", "temperature", "quality"])

the result turns out to be

            time  temperature  quality
0  1460958592800         24.2        3
1  1460958602800         24.1        1
2  1460958612800         23.9        1
3  1460958622800         24.2        1
4  1460958632800         24.5        1
5  1460958642800         24.9        1
6  1460958652800         24.6        1
7  1460958662800         24.7        1
8  1460958672800         24.7        1

which is your table for dataset

Sign up to request clarification or add additional context in comments.

Comments

0

First off, try pd.read_json():

df = pd.read_json(file_path)

However, it cannot flatten a deeply nested object, in which case there's a specialized pandas function pd.json_normalize() that converts json data into a flat table. Since the data to be converted into a dataframe is nested under multiple keys, we can pass the path to it as a list as the record_path= kwarg. The path to values is tags -> results -> values, so we pass it as a list.

# first load the json file
import json
with open(file_path, 'r') as f:
    data = json.load(f)

# convert `data` into a dataframe
df = pd.json_normalize(data, record_path=['tags', 'results', 'values']).set_axis(['time', 'temperature', 'quality'], axis=1)

res

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.