0

I've download a time series from Quandl using the get() function from Quandl python module and called UNES_HARD_COAL_BR and it has shape (24,19), but i want use only the column 1 to 3 and the column 18. I wrote this script to do this job using a list called ll and applying the drop() method in my DataFrame object, the list contain the name of column that i don't use. The challenge here is do it without create a list.

import Quandl
import pandas as pd

UNES_HARD_COAL_BR = Quandl.get("UENG/CL_BRA", authtoken="xX6ntNSFuvq7eCZvDdvL")
UNES_HARD_COAL_BR.columns = UNES_HARD_COAL_BR.columns.str.replace(' ', '_')



ll =['Hard_coal_-_transformation_(Metric_tons,_thousand)', 'Hard_coal_-_transformation_in_coke_ovens_(Metric_tons,_thousand)','Hard_coal_-_transformation_in_electricity,_CHP_and_heat_plants_(Metric_tons,_thousand)','Hard_coal_-_transformation_in_electricity_plants_-_main_activity_producers_(Metric_tons,_thousand)','Hard_coal_-_final_energy_consumption_(Metric_tons,_thousand)','Hard_coal_-_consumption_by_manufacturing,_construction_and_non-fuel_mining_industry_(Metric_tons,_thousand)','Hard_coal_-_consumption_by_other_manuf.,_const._and_non-fuel_ind._(Metric_tons,_thousand)','Hard_coal_-_final_consumption_(Metric_tons,_thousand)','Hard_coal_-_stock_changes_(Metric_tons,_thousand)','Hard_coal_-_transformation_in_electricity_plants_-_autoproducers_(Metric_tons,_thousand)','Hard_coal_-_consumption_by_transport_(Metric_tons,_thousand)','Hard_coal_-_consumption_by_rail_(Metric_tons,_thousand)','Hrad_coal_-_consumption_by_iron_and_steel_industry_(Metric_tons,_thousand)', 'Hard_coal_-_losses_(Metric_tons,_thousand)', 'Hard_coal_-_total_energy_supply_(Metric_tons,_thousand)']

UNES_HARD_COAL_BR.drop(ll, axis=1, inplace=True)

Related

How to select only specific columns from a DataFrame with MultiIndex columns?

pandas: Extracting specific selected columns from a DataFrame to new DataFrame

1
  • you can use df = df.iloc[:, [1,2,3,18]] Commented Apr 24, 2016 at 21:51

1 Answer 1

1

use .iloc[] and note that pandas counts columns starting from 0:

In [14]: UNES_HARD_COAL_BR = UNES_HARD_COAL_BR.iloc[:, [0,1,2,17]]

In [15]: UNES_HARD_COAL_BR.head()
Out[15]:
            Hard_coal_-_production_(Metric_tons,_thousand)  \
Date
1990-12-31                                          4595.0
1991-12-31                                          5188.0
1992-12-31                                          4731.0
1993-12-31                                          4595.0
1994-12-31                                          5134.0

            Hard_coal_-_imports_(Metric_tons,_thousand)  \
Date
1990-12-31                                      10146.0
1991-12-31                                      10758.0
1992-12-31                                      10399.0
1993-12-31                                      10975.0
1994-12-31                                      11319.0

            Hard_coal_-_exports_(Metric_tons,_thousand)  \
Date
1990-12-31                                          NaN
1991-12-31                                          NaN
1992-12-31                                          NaN
1993-12-31                                          NaN
1994-12-31                                          NaN

            Hard_coal_-_consumption_by_chemical_and_petrochemical_industry_(Metric_tons,_thousand)
Date
1990-12-31                                              260.0
1991-12-31                                              375.0
1992-12-31                                              390.0
1993-12-31                                              362.0
1994-12-31                                              354.0
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.