320

Without using groupby how would I filter out data without NaN?

Let say I have a matrix where customers will fill in 'N/A','n/a' or any of its variations and others leave it blank:

import pandas as pd
import numpy as np


df = pd.DataFrame({'movie': ['thg', 'thg', 'mol', 'mol', 'lob', 'lob'],
                  'rating': [3., 4., 5., np.nan, np.nan, np.nan],
                  'name': ['John', np.nan, 'N/A', 'Graham', np.nan, np.nan]})

nbs = df['name'].str.extract('^(N/A|NA|na|n/a)')
nms=df[(df['name'] != nbs) ]

output:

>>> nms
  movie    name  rating
0   thg    John       3
1   thg     NaN       4
3   mol  Graham     NaN
4   lob     NaN     NaN
5   lob     NaN     NaN

How would I filter out NaN values so I can get results to work with like this:

  movie    name  rating
0   thg    John       3
3   mol  Graham     NaN

I am guessing I need something like ~np.isnan but the tilda does not work with strings.

1
  • 2
    df[df.name.notnull()] Commented Jan 31, 2022 at 6:36

7 Answers 7

431

Simplest of all solutions:

filtered_df = df[df['name'].notnull()]

Thus, it filters out only rows that doesn't have NaN values in 'name' column.

For multiple columns:

filtered_df = df[df[['name', 'country', 'region']].notnull().all(1)]
Sign up to request clarification or add additional context in comments.

Comments

341

Just drop them:

nms.dropna(thresh=2)

this will drop all rows where there are at least two non-NaN.

Then you could then drop where name is NaN:

In [87]:

nms
Out[87]:
  movie    name  rating
0   thg    John       3
1   thg     NaN       4
3   mol  Graham     NaN
4   lob     NaN     NaN
5   lob     NaN     NaN

[5 rows x 3 columns]
In [89]:

nms = nms.dropna(thresh=2)
In [90]:

nms[nms.name.notnull()]
Out[90]:
  movie    name  rating
0   thg    John       3
3   mol  Graham     NaN

[2 rows x 3 columns]

EDIT

Actually looking at what you originally want you can do just this without the dropna call:

nms[nms.name.notnull()]

UPDATE

Looking at this question 3 years later, there is a mistake, firstly thresh arg looks for at least n non-NaN values so in fact the output should be:

In [4]:
nms.dropna(thresh=2)

Out[4]:
  movie    name  rating
0   thg    John     3.0
1   thg     NaN     4.0
3   mol  Graham     NaN

It's possible that I was either mistaken 3 years ago or that the version of pandas I was running had a bug, both scenarios are entirely possible.

Comments

18
df.dropna(subset=['columnName1', 'columnName2'])

Comments

10
df = pd.DataFrame({'movie': ['thg', 'thg', 'mol', 'mol', 'lob', 'lob'],'rating': [3., 4., 5., np.nan, np.nan, np.nan],'name': ['John','James', np.nan, np.nan, np.nan,np.nan]})

for col in df.columns:
    df = df[~pd.isnull(df[col])]

Comments

3

You can also use query:

out = df.query("name.notna() & name !='N/A'", engine='python')

Output:

  movie  rating    name
0   thg     3.0    John
3   mol     NaN  Graham

1 Comment

Your answer could be improved with additional supporting information like citations or documentation about the use of query.
1

Inside query() pass column_name == column_name to keep the rows where column_name is not NA.

For your case:

nms.query('name == name')

Comments

1

You can filter negative to columns with na values: dt = dt[~dt[columns_to_filter].isna().all(1)]

1 Comment

Your answer could be improved with additional supporting information. Please edit to add further details, such as citations or documentation, so that others can confirm that your answer is correct. You can find more information on how to write good answers in the help center.

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.