You can use Huffman coding with a shared Huffman tree among all texts you want to compress.
While you typically construct a Huffman tree for each string to be compressed separately, this would require a lot of overhead in storage which should be avoided here. That's also the major problem when using a standard compression scheme for your case: most of them have some overhead which kills your compression efficiency for very short strings. Some of them don't have a (big) overhead but those are typically less efficient in general.
When constructing a Huffman tree which is later used for compression and decompression, you typically use the texts which will be compressed to decide which character is encoded with which bits. Since in your case the texts to be compressed seem to be unknown in advance, you need to have some "pseudo" texts to build the tree, maybe from a dictionary of the human language or some experience of previous user data.
Then construct the Huffman tree and store it once in your application; either hardcode it into the binary or provide it in the form of a file. Then you can compress and decompress any texts using this tree. Whenever you decide to change the tree since you gain better experience on which texts are compressed, the compressed string representation also changes. It might be a good idea to introduce versioning and store the tree version together with each string you compress.
Another improvement you might think about is to use multi-character Huffman encoding. Instead of compressing the texts character by character, you could find frequent syllables or words and put them into the tree too; then they require even less bits in the compressed string. This however requires a little bit more complicated compression algorithm, but it might be well worth the effort.
To process a string of bits in the compression and decompression routine in C++(*), I recommend either boost::dynamic_bitset or std::vector<bool>. Both internally pack multiple bits into bytes.
(*)The question once had the c++ tag, so OP obviously wanted to implement it in C++. But as the general problem is not specific to a programming language, the tag was removed. But I still kept the C++-specific part of the answer.