Use chain.from_iterable:
vec = sp.array(list(chain.from_iterable(lst)))
This avoids using * which is quite expensive to handle if the iterable has many sublists.
An other option might be to sum the lists:
vec = sp.array(sum(lst, []))
Note however that this will cause quadratic reallocation. Something like this performs much better:
def sum_lists(lst):
if len(lst) < 2:
return sum(lst, [])
else:
half_length = len(lst) // 2
return sum_lists(lst[:half_length]) + sum_lists(lst[half_length:])
On my machine I get:
>>> L = [[random.randint(0, 500) for _ in range(x)] for x in range(10, 510)]
>>> timeit.timeit('sum(L, [])', 'from __main__ import L', number=1000)
168.3029818534851
>>> timeit.timeit('sum_lists(L)', 'from __main__ import L,sum_lists', number=1000)
10.248489141464233
>>> 168.3029818534851 / 10.248489141464233
16.422223757114615
As you can see, a 16x speed-up. The chain.from_iterable is even faster:
>>> timeit.timeit('list(itertools.chain.from_iterable(L))', 'import itertools; from __main__ import L', number=1000)
1.905594825744629
>>> 10.248489141464233 / 1.905594825744629
5.378105042586658
An other 6x speed-up.
I looked for a "pure-python" solution, not knowing numpy. I believe Abhijitunutbu/senderle's solution is the way to go in your case.