No programming language that I know of has anything like a "singleton stateful error stream" built in, so you'd have to make one. And you simply wouldn't make such a thing if you were trying to write your program in a pure functional style.
You could, however, have a sum function that returns either the sum or an indication of an error. The type used to do this is in fact often known by the name Either. Then you could easily make a function that invokes a whole bunch of computations that could possibly return an error, and returns a list of all the errors that were encountered in the other computations. That's pretty close to what you were talking about; it's just explicitly returned rather than being global.
Remember, the question when you're writing a functional program is "how do I make a program that has the behavior I want?" not, "how would I duplicate one particular approach taken in another programming style?". A "global stateful error stream" is a means not an end. You can't have a global stateful error stream in pure function style, no. But ask yourself what you're using the global stateful error stream to achieve; whatever it is, you can achieve that in functional programming, just not with the same mechanism.
Asking whether pure functional programming can implement a particular technique that depends on side effects is like asking how you use techniques from assembly in object-oriented programming. OO provides different tools for you to use to solve problems; limiting yourself to using those tools to emulate a different toolset is not going to be an effective way to work with them.
In response to comments: If what you want to achieve with your error stream is logging error messages to a terminal, then yes, at some level the code is going to have to do IO to do that.1
Printing to terminal is just like any other IO, there's nothing particularly special about it that makes it worthy of singling out as a case where state seems especially unavoidable. So if this turns your question into "How do pure functional programs handle IO?", then there are no doubt many duplicate questions on SO, not to mention many many blog posts and tutorials speaking precisely to that issue. It's not like it's a sudden surprise to implementors and users of pure programming languages, the question has been around for decades, and there have been some quite sophisticated thought put into the answers.
There are different approaches taken in different languages (IO monad in Haskell, unique modes in Mercury, lazy streams of requests and responses in historical versions of Haskell, and more). The basic idea is to come up with a model which can be manipulated by pure code, and hook up manipulations of the model to actual impure operations within the language implementation. This allows you to keep the benefits of purity (the proofs that apply to pure code but not to general impure code will still apply to code using the pure IO model).
The pure model has to be carefully designed so that you can't actually do anything with it that doesn't make sense in terms of actual IO. For example, Mercury does IO by having you write programs as if you're passing around the current state of the universe as an extra parameter. This pure model accurately represents the behaviour of operations that depend on and affect the universe outside the program, but only when there is exactly one state of the universe in the system at any one time, which is threaded through the entire program from start to finish. So some restrictions are put in
- The type
io is made abstract so that there's no way to construct a value of that type; the only way you can get one is to be passed one from your caller. An io value is passed into the main predicate by the language implementation to kick the whole thing off.
- The mode of the
io value passed in to main is declared such that it is unique. This means you can't do things that might cause it to be duplicated, such as putting it in a container or passing the same io value to multiple different invocations. The unique mode ensures that you can only ass the io value to a predicate that also uses the unique mode, and as soon as you pass it once the value is "dead" and can't be passed anywhere else.
1 Note that even in imperative programs, you gain a lot of flexibility if you have your error logging system return a stream of error messages and then only actually make the decision to print them close to the outermost layer of the program. If your log calls are directly writing the output immediately, here's just a few things I can think of off the top of my head that become much harder to do with such a system:
- Speculatively execute a computation and see whether it failed by checking whether it emitted any errors
- Combine multiple high level systems into a single system, adding tags to the logs to distinguish each system
- Emit debug and info log messages only if there is also an error message (so the output is clean when there are no errors to debug, and rich in detail when there are)