source:  thenextweb.com  (2017)
SMART BUSINESS IN AN
AGE OF INTELLIGENT
MACHINES
Dr. Alessandro Lanteri
Entrepreneur  Day  
DTEC,  Nov  2017  
Dubai  (UAE)
Alessandro Lanteri
Founded (2009), advised business incubators
TEDx speaker (2017)
Advisor, Consultant, Coach
PhD Philosophy & Economics, Erasmus (NL)
MA Economics, Bocconi (IT)
Exec.Ed. Said Oxford (UK), MIT (USA)
Academics
Abu Dhabi University (UAE)
Hult International Business School (UK)
Professor of Entrepreneurship
Ran a marathon | Lived in 15+ global cities
Other Stuff
https://www.youtube.com/watch?v=HAfLCTRuh7U
>> universities where I worked <<
UCLA
NYU
HULT
AUB
ADU
ERASMUS
BOCCONI
HELSINKI
Open innovation partnership
to propose solutions for the
future of banking and private
banking.
Virgin Money (2015/16)
Portfolio selected recent projects
Open innovation partnership
on the future of mobility. Ran
multiple design sprints.
Ford Motors (2016)
Open innovation partnership
to define business model and
go-to-market strategy for a
smart tag.
ABB (2016)
Open innovation partnership
to design new products and a
new social business model.
Unilever (2017, 2015)
Member of the advisory board
of PACI. Led workshops in
Geneva, Mexico City, London.
Contributed to Davos reports.
World Economic Forum(2016/17)
Open innovation partnership
to design a new service and a
new business model.
www.studentlifestart.com
Virgin Money (2016/17)
Exponential Technologies
The Future (and Present) of Work
Exponential Leadership
AI will Save the World. Or Destroy It
Overview
Collective Intelligence
AI & Machine Learning
Autonomous Vehicles
AI Strategy for Disruption
Trends in AI Startups
The Future of AI
Natural Language Processing
Robots and other Machines
AI & Machine Learning
Collective Intelligence
AI Strategy for Disruption
Trends in AI Startups
Content for today
Exponential Technologies
AI & Machine Learning
Collective Intelligence
AI Strategy for Disruption
Trends in AI Startups
Content
Exponential Technologies
Machine Learning (1)
tree/not  
tree  type
training  set features classifica/on value
tree/not  
tree  type
features  +  classifica/on valuetraining  set
Machine Learning (2)
neural  network  
(deep,  convolu/onal,  recurrent…)  
input algorithm output
[]
1  
0  
0  
1  
… []
1  
0  
0  
1  
…
source:  Lee  et  al.  (2011)
What do you see?
A group of young people playing
a game of Frisbee.
Computer caption
A group of men playing Frisbee in
the park.
Human caption
source:  Google  (2016)
source:  Google  (2016)
What do you see? http://places2.csail.mit.edu/demo.html
A group of young people playing
a game of Frisbee.
Computer caption
A group of men playing Frisbee in
the park.
Human caption
Machine Learning (3)
source:  MGI  (2017)
“Almost all of AI’s recent progress is
through one type, in which some input
data (A) is used to quickly generate
some simple response (B).”
“
source:  Ng  (2016)
- Andrew Ng -
“Can a problem be solved with ML?”
“Are there enough data to train ML?”
“Is the solution predictable enough
for patterns to be reliable?”
?
AI & Machine Learning
Collective Intelligence
AI Strategy for Disruption
Trends in AI Startups
Exponential Technologies
Content
A Cambrian Explosion in AI
NetworksData Algorithms
Exponential TechsCloud
source:  McAfee  &  Brynjolfsson  (2017)
source:  Kurzweil  (2001),  Singularity  University  (2017)
Progress
Time
30
1 billion
linear
exponential
source:  Kurzweil  (2001),  Singularity  University  (2017)
linear: 1, 2, 3, 4… 30
exponential: 1, 2, 4, 8… 109
Progress
Time
30
1 billion
linear
exponential
source:  Kurzweil  (2001),  Singularity  University  (2017)
linear: 1, 2, 3, 4… 30
exponential: 1, 2, 4, 8… 109
😕
😍
😮
DECEPTIVE  
GROWTH
DISRUPTIVE  
GROWTH
“The Law of Accelerating Returns:
Price, performance, and capacity of
information technology progress at a
predictable, exponential rate”
“
source:  Kurzweil  (2001)
- Ray Kurzweil -
source:  Diamandis  &  Kotler  (2016),  Singularity  University  (2017)
The 6 D’s of exponential techs
3  EFFECTS
3  PHASES
“What amazing ‘next big thing’ does not
seem to be giving any results?”
“What physical product or service can be
digitized?”
“What expensive product will change the
world when it becomes widely available?”
?
AI & Machine Learning
Collective Intelligence
AI Strategy for Disruption
Trends in AI Startups
Exponential Technologies
Content
The role(s) of humans
Creating  Software Selecting  Applications Performing  Human-­‐only  TasksFixing  Problems
source:  Malone  (2017)
Providing  Examples Providing  Feedback
The role(s) of technology
Tool
Tech  performs  the  task  
Humans  monitor  tech
Assistant
Peer
spreadsheets,  cruise  control
Tech  with  some  supervision  
Tech  takes  some  initiative
KLM’s  social  media  bots,  StichFix  
IBM’s  Watson
Tech/Humans  perform  similar  tasks  
Humans  solve  complex  cases
Lemonade  insurance  
Amazon  package  control
Manager
Tech  assigns  tasks,  evaluates,  trains  humans
CrowdForge,  Cogito
source:  Malone  (2017)
Collective Intelligence
source:  Malone  (2017)
How  can  humans  and  machines  be  connected  so  that  collec%vely  they  act  
more  intelligently  than  any  person,  group,  or  machine  can?
Input Output
Machine Humans
Learning  Loop
e.g.
Collective Intelligence cases
?
https://www.youtube.com/watch?v=fIw7BwIoGus  
taking the robot out of the human
https://www.youtube.com/watch?v=6KRjuuEVEZs  
making the human into a robot?
Assistant
Peer
“What jobs entail many repetitive and
predictable tasks?”
“Can they be automated?”
“Will a computer take these job?”
?
AI & Machine Learning
Collective Intelligence
AI Strategy for Disruption
Trends in AI Startups
Exponential Technologies
Content
Tailoring products to
narrow market segments.
Niche
Serving customers at a
lower cost than
competitors.
Cost Leadership
Providing customers with
unique value.
Differentiation
AI & Business Strategy
source:  Porter  (1979),  Martin  (2015)
Robotic Process Automation
Loan default
Axa “large loss”
Google search algorithms
IBM Watson
TellusLab
Clustering to identify niches
Netflix & Amazon
recommendation systems
source:  MGI  (2017)
“What industry has the indicators of
potential for disruption?”
“What archetype of disruption would work
in that industry?”
“What disruption will ensue?”
?
AI & Machine Learning
Collective Intelligence
AI Strategy for Disruption
Trends in AI Startups
Exponential Technologies
Content
source:  Corea  (2017)
Trends in AI startups
source:  Corea  (2017)
Trends in AI startups
Trends in AI startups
source:  Corea  (2017)
open source (academics, raise bar for
competition, lower bar for adoption, multiple
crowd/platform effects)
Unprofitable
similar to pharma (long-term, uncertain
returns to expensive R&D)
data is the new oil
Pharma-like + Oil
exit in 1-3 years
poaching of scarce AI talent
Early acqui-hire
source:  CB  Insights,  in:  Corea  (2017)
Trends in AI startups
source:  Corea  (2017)
Trends in AI startups
thank you
source:  www.slidemash.com
Alessandro Lanteri
alelanteri@gmail.com
References
Corea,  F.  (2017).  Artificial  Intelligence  and  Exponential  Technologies:  Business  Models  Evolution  and  New  Investment  
Opportunities.  Springer.    
Diamandis,  P.  &  S.  Kotler  (2016).  Bold.  How  to  Go  Big,  Create  Wealth  and  Impact  the  World.  Simon  &  Schuster.  
Kurzweil,  R.  (2001).  “The  law  of  accelerating  returns”,  www.kurzweilai.net/the-­‐law-­‐of-­‐accelerating-­‐returns  
Lee,  H.,  Grosse,  R.,  Ranganath,  R.  &  A.  Ng  (2011).  “Unsupervised  Learning  of  Hierarchical  Representations  with  
Convolutional  Deep  Belief  Networks”.  Comm.  ACM  2011.    
Malone,  T.  (2017).  MIT  Sloan  &  MIT  CSAIL  Artificial  Intelligence:  Implications  for  business  strategy  program  2017-­‐10-­‐30.  MIT.  
Martin,  R.  (2015).  “There  Are  Still  Only  Two  Ways  to  Compete”,  Harvard  Business  Review,  April.  
McAfee,  A.  &  Brynjolfsson,  E.  (2017).  Machine,  Platform,  Crowd:  Harnessing  Our  Digital  Future.  Norton  &  Company.    
McKinsey  Global  Institute  (2016).  The  age  of  analytics:  Competing  in  a  data-­‐driven  world.  www.mckinsey.com/business-­‐
functions/mckinsey-­‐analytics/our-­‐insights/the-­‐age-­‐of-­‐analytics-­‐competing-­‐in-­‐a-­‐data-­‐driven-­‐world  
Ng,  A.  (2016).  What  AI  Can  and  Can't  Do.  https://hbr.org/2016/11/what-­‐artificial-­‐intelligence-­‐can-­‐and-­‐cant-­‐do-­‐right-­‐now  
Porter,  M.  (1979).  “How  Competitive  Forces  Shape  Strategy”,  Harvard  Business  Review,  57.  
Singularity  University  (2017).  Understanding  Exponentials.  https://beta.su.org/courses/understanding-­‐exponentials

Smart Business and Artificial Intelligence

  • 1.
    source:  thenextweb.com  (2017) SMARTBUSINESS IN AN AGE OF INTELLIGENT MACHINES Dr. Alessandro Lanteri Entrepreneur  Day   DTEC,  Nov  2017   Dubai  (UAE)
  • 2.
    Alessandro Lanteri Founded (2009),advised business incubators TEDx speaker (2017) Advisor, Consultant, Coach PhD Philosophy & Economics, Erasmus (NL) MA Economics, Bocconi (IT) Exec.Ed. Said Oxford (UK), MIT (USA) Academics Abu Dhabi University (UAE) Hult International Business School (UK) Professor of Entrepreneurship Ran a marathon | Lived in 15+ global cities Other Stuff https://www.youtube.com/watch?v=HAfLCTRuh7U
  • 3.
    >> universities whereI worked << UCLA NYU HULT AUB ADU ERASMUS BOCCONI HELSINKI
  • 4.
    Open innovation partnership topropose solutions for the future of banking and private banking. Virgin Money (2015/16) Portfolio selected recent projects Open innovation partnership on the future of mobility. Ran multiple design sprints. Ford Motors (2016) Open innovation partnership to define business model and go-to-market strategy for a smart tag. ABB (2016) Open innovation partnership to design new products and a new social business model. Unilever (2017, 2015) Member of the advisory board of PACI. Led workshops in Geneva, Mexico City, London. Contributed to Davos reports. World Economic Forum(2016/17) Open innovation partnership to design a new service and a new business model. www.studentlifestart.com Virgin Money (2016/17)
  • 5.
    Exponential Technologies The Future(and Present) of Work Exponential Leadership AI will Save the World. Or Destroy It Overview Collective Intelligence AI & Machine Learning Autonomous Vehicles AI Strategy for Disruption Trends in AI Startups The Future of AI Natural Language Processing Robots and other Machines
  • 6.
    AI & MachineLearning Collective Intelligence AI Strategy for Disruption Trends in AI Startups Content for today Exponential Technologies
  • 7.
    AI & MachineLearning Collective Intelligence AI Strategy for Disruption Trends in AI Startups Content Exponential Technologies
  • 9.
    Machine Learning (1) tree/not  tree  type training  set features classifica/on value tree/not   tree  type features  +  classifica/on valuetraining  set
  • 10.
    Machine Learning (2) neural network   (deep,  convolu/onal,  recurrent…)   input algorithm output [] 1   0   0   1   … [] 1   0   0   1   …
  • 11.
    source:  Lee  et al.  (2011)
  • 13.
    What do yousee? A group of young people playing a game of Frisbee. Computer caption A group of men playing Frisbee in the park. Human caption source:  Google  (2016)
  • 14.
  • 15.
    What do yousee? http://places2.csail.mit.edu/demo.html A group of young people playing a game of Frisbee. Computer caption A group of men playing Frisbee in the park. Human caption
  • 16.
  • 17.
    “Almost all ofAI’s recent progress is through one type, in which some input data (A) is used to quickly generate some simple response (B).” “ source:  Ng  (2016) - Andrew Ng -
  • 18.
    “Can a problembe solved with ML?” “Are there enough data to train ML?” “Is the solution predictable enough for patterns to be reliable?” ?
  • 19.
    AI & MachineLearning Collective Intelligence AI Strategy for Disruption Trends in AI Startups Exponential Technologies Content
  • 20.
    A Cambrian Explosionin AI NetworksData Algorithms Exponential TechsCloud source:  McAfee  &  Brynjolfsson  (2017)
  • 21.
    source:  Kurzweil  (2001), Singularity  University  (2017)
  • 22.
    Progress Time 30 1 billion linear exponential source:  Kurzweil (2001),  Singularity  University  (2017) linear: 1, 2, 3, 4… 30 exponential: 1, 2, 4, 8… 109
  • 23.
    Progress Time 30 1 billion linear exponential source:  Kurzweil (2001),  Singularity  University  (2017) linear: 1, 2, 3, 4… 30 exponential: 1, 2, 4, 8… 109 😕 😍 😮 DECEPTIVE   GROWTH DISRUPTIVE   GROWTH
  • 24.
    “The Law ofAccelerating Returns: Price, performance, and capacity of information technology progress at a predictable, exponential rate” “ source:  Kurzweil  (2001) - Ray Kurzweil -
  • 25.
    source:  Diamandis  & Kotler  (2016),  Singularity  University  (2017) The 6 D’s of exponential techs 3  EFFECTS 3  PHASES
  • 26.
    “What amazing ‘nextbig thing’ does not seem to be giving any results?” “What physical product or service can be digitized?” “What expensive product will change the world when it becomes widely available?” ?
  • 27.
    AI & MachineLearning Collective Intelligence AI Strategy for Disruption Trends in AI Startups Exponential Technologies Content
  • 28.
    The role(s) ofhumans Creating  Software Selecting  Applications Performing  Human-­‐only  TasksFixing  Problems source:  Malone  (2017) Providing  Examples Providing  Feedback
  • 29.
    The role(s) oftechnology Tool Tech  performs  the  task   Humans  monitor  tech Assistant Peer spreadsheets,  cruise  control Tech  with  some  supervision   Tech  takes  some  initiative KLM’s  social  media  bots,  StichFix   IBM’s  Watson Tech/Humans  perform  similar  tasks   Humans  solve  complex  cases Lemonade  insurance   Amazon  package  control Manager Tech  assigns  tasks,  evaluates,  trains  humans CrowdForge,  Cogito source:  Malone  (2017)
  • 30.
    Collective Intelligence source:  Malone (2017) How  can  humans  and  machines  be  connected  so  that  collec%vely  they  act   more  intelligently  than  any  person,  group,  or  machine  can? Input Output Machine Humans Learning  Loop e.g.
  • 31.
    Collective Intelligence cases ? https://www.youtube.com/watch?v=fIw7BwIoGus  taking the robot out of the human https://www.youtube.com/watch?v=6KRjuuEVEZs   making the human into a robot? Assistant Peer
  • 32.
    “What jobs entailmany repetitive and predictable tasks?” “Can they be automated?” “Will a computer take these job?” ?
  • 33.
    AI & MachineLearning Collective Intelligence AI Strategy for Disruption Trends in AI Startups Exponential Technologies Content
  • 34.
    Tailoring products to narrowmarket segments. Niche Serving customers at a lower cost than competitors. Cost Leadership Providing customers with unique value. Differentiation AI & Business Strategy source:  Porter  (1979),  Martin  (2015) Robotic Process Automation Loan default Axa “large loss” Google search algorithms IBM Watson TellusLab Clustering to identify niches Netflix & Amazon recommendation systems
  • 35.
  • 36.
    “What industry hasthe indicators of potential for disruption?” “What archetype of disruption would work in that industry?” “What disruption will ensue?” ?
  • 37.
    AI & MachineLearning Collective Intelligence AI Strategy for Disruption Trends in AI Startups Exponential Technologies Content
  • 38.
  • 39.
  • 40.
    Trends in AIstartups source:  Corea  (2017) open source (academics, raise bar for competition, lower bar for adoption, multiple crowd/platform effects) Unprofitable similar to pharma (long-term, uncertain returns to expensive R&D) data is the new oil Pharma-like + Oil exit in 1-3 years poaching of scarce AI talent Early acqui-hire
  • 41.
    source:  CB  Insights, in:  Corea  (2017) Trends in AI startups
  • 42.
  • 43.
  • 44.
    References Corea,  F.  (2017). Artificial  Intelligence  and  Exponential  Technologies:  Business  Models  Evolution  and  New  Investment   Opportunities.  Springer.     Diamandis,  P.  &  S.  Kotler  (2016).  Bold.  How  to  Go  Big,  Create  Wealth  and  Impact  the  World.  Simon  &  Schuster.   Kurzweil,  R.  (2001).  “The  law  of  accelerating  returns”,  www.kurzweilai.net/the-­‐law-­‐of-­‐accelerating-­‐returns   Lee,  H.,  Grosse,  R.,  Ranganath,  R.  &  A.  Ng  (2011).  “Unsupervised  Learning  of  Hierarchical  Representations  with   Convolutional  Deep  Belief  Networks”.  Comm.  ACM  2011.     Malone,  T.  (2017).  MIT  Sloan  &  MIT  CSAIL  Artificial  Intelligence:  Implications  for  business  strategy  program  2017-­‐10-­‐30.  MIT.   Martin,  R.  (2015).  “There  Are  Still  Only  Two  Ways  to  Compete”,  Harvard  Business  Review,  April.   McAfee,  A.  &  Brynjolfsson,  E.  (2017).  Machine,  Platform,  Crowd:  Harnessing  Our  Digital  Future.  Norton  &  Company.     McKinsey  Global  Institute  (2016).  The  age  of  analytics:  Competing  in  a  data-­‐driven  world.  www.mckinsey.com/business-­‐ functions/mckinsey-­‐analytics/our-­‐insights/the-­‐age-­‐of-­‐analytics-­‐competing-­‐in-­‐a-­‐data-­‐driven-­‐world   Ng,  A.  (2016).  What  AI  Can  and  Can't  Do.  https://hbr.org/2016/11/what-­‐artificial-­‐intelligence-­‐can-­‐and-­‐cant-­‐do-­‐right-­‐now   Porter,  M.  (1979).  “How  Competitive  Forces  Shape  Strategy”,  Harvard  Business  Review,  57.   Singularity  University  (2017).  Understanding  Exponentials.  https://beta.su.org/courses/understanding-­‐exponentials