Optimizing Parallel Reduction in CUDA
Mark Harris
NVIDIA Developer Technology
2
Parallel Reduction
Common and important data parallel primitive
Easy to implement in CUDA
Harder to get it right
Serves as a great optimization example
We’ll walk step by step through 7 different versions
Demonstrates several important optimization strategies
3
Parallel Reduction
Tree-based approach used within each thread block
Need to be able to use multiple thread blocks
To process very large arrays
To keep all multiprocessors on the GPU busy
Each thread block reduces a portion of the array
But how do we communicate partial results between
thread blocks?
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4
Problem: Global Synchronization
If we could synchronize across all thread blocks, could easily
reduce very large arrays, right?
Global sync after each block produces its result
Once all blocks reach sync, continue recursively
But CUDA has no global synchronization. Why?
Expensive to build in hardware for GPUs with high processor
count
Would force programmer to run fewer blocks (no more than #
multiprocessors * # resident blocks / multiprocessor) to avoid
deadlock, which may reduce overall efficiency
Solution: decompose into multiple kernels
Kernel launch serves as a global synchronization point
Kernel launch has negligible HW overhead, low SW overhead
5
Solution: Kernel Decomposition
Avoid global sync by decomposing computation
into multiple kernel invocations
In the case of reductions, code for all levels is the
same
Recursive kernel invocation
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
Level 0:
8 blocks
Level 1:
1 block
// Already tried this
6
What is Our Optimization Goal?
We should strive to reach GPU peak performance
Choose the right metric:
GFLOP/s: for compute-bound kernels
Bandwidth: for memory-bound kernels
Reductions have very low arithmetic intensity
1 flop per element loaded (bandwidth-optimal)
Therefore we should strive for peak bandwidth
Will use G80 GPU for this example
384-bit memory interface, 900 MHz DDR
384 * 1800 / 8 = 86.4 GB/s
7
Reduction #1: Interleaved Addressing
__global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();
// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
8
Parallel Reduction: Interleaved Addressing
10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2
Values (shared memory)
0 2 4 6 8 10 12 14
11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2
Values
0 4 8 12
18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2
Values
0 8
24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2
Values
0
41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2
Values
Thread
IDs
Step 1
Stride 1
Step 2
Stride 2
Step 3
Stride 4
Step 4
Stride 8
Thread
IDs
Thread
IDs
Thread
IDs
9
Reduction #1: Interleaved Addressing
__global__ void reduce1(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
Problem: highly divergent
warps are very inefficient, and
% operator is very slow
10
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Note: Block Size = 128 threads for all tests
Bandwidth
Time (222 ints)
11
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;
if (index < blockDim.x) {
sdata[index] += sdata[index + s];
}
__syncthreads();
}
Reduction #2: Interleaved Addressing
Just replace divergent branch in inner loop:
With strided index and non-divergent branch:
12
Parallel Reduction: Interleaved Addressing
10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2
Values (shared memory)
0 1 2 3 4 5 6 7
11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2
Values
0 1 2 3
18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2
Values
0 1
24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2
Values
0
41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2
Values
Thread
IDs
Step 1
Stride 1
Step 2
Stride 2
Step 3
Stride 4
Step 4
Stride 8
Thread
IDs
Thread
IDs
Thread
IDs
New Problem: Shared Memory Bank Conflicts
13
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
14
Parallel Reduction: Sequential Addressing
10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2
Values (shared memory)
0 1 2 3 4 5 6 7
8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2
Values
0 1 2 3
8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2
Values
0 1
21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2
Values
0
41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2
Values
Thread
IDs
Step 1
Stride 8
Step 2
Stride 4
Step 3
Stride 2
Step 4
Stride 1
Thread
IDs
Thread
IDs
Thread
IDs
Sequential addressing is conflict free
15
for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;
if (index < blockDim.x) {
sdata[index] += sdata[index + s];
}
__syncthreads();
}
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
Reduction #3: Sequential Addressing
Just replace strided indexing in inner loop:
With reversed loop and threadID-based indexing:
// Already using this
16
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Kernel 3:
sequential addressing
1.722 ms 9.741 GB/s 2.01x 4.68x
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
Insert text here
17
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
Idle Threads
Problem:
Half of the threads are idle on first loop iteration!
This is wasteful…
18
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
Reduction #4: First Add During Load
Halve the number of blocks, and replace single load:
With two loads and first add of the reduction:
19
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Kernel 3:
sequential addressing
1.722 ms 9.741 GB/s 2.01x 4.68x
Kernel 4:
first add during global load
0.965 ms 17.377 GB/s 1.78x 8.34x
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
20
Instruction Bottleneck
At 17 GB/s, we’re far from bandwidth bound
And we know reduction has low arithmetic intensity
Therefore a likely bottleneck is instruction overhead
Ancillary instructions that are not loads, stores, or
arithmetic for the core computation
In other words: address arithmetic and loop overhead
Strategy: unroll loops
21
Unrolling the Last Warp
As reduction proceeds, # “active” threads decreases
When s <= 32, we have only one warp left
Instructions are SIMD synchronous within a warp
That means when s <= 32:
We don’t need to __syncthreads()
We don’t need “if (tid < s)” because it doesn’t save any
work
Let’s unroll the last 6 iterations of the inner loop
__device__ void warpReduce(volatile int* sdata, int tid) {
sdata[tid] += sdata[tid + 32];
sdata[tid] += sdata[tid + 16];
sdata[tid] += sdata[tid + 8];
sdata[tid] += sdata[tid + 4];
sdata[tid] += sdata[tid + 2];
sdata[tid] += sdata[tid + 1];
}
// later…
for (unsigned int s=blockDim.x/2; s>32; s>>=1) {
if (tid < s)
sdata[tid] += sdata[tid + s];
__syncthreads();
}
if (tid < 32) warpReduce(sdata, tid);
22
Reduction #5: Unroll the Last Warp
Note: This saves useless work in all warps, not just the last one!
Without unrolling, all warps execute every iteration of the for loop and if statement
IMPORTANT:
For this to be correct,
we must use the
“volatile” keyword!
23
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Kernel 3:
sequential addressing
1.722 ms 9.741 GB/s 2.01x 4.68x
Kernel 4:
first add during global load
0.965 ms 17.377 GB/s 1.78x 8.34x
Kernel 5:
unroll last warp
0.536 ms 31.289 GB/s 1.8x 15.01x
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
24
Complete Unrolling
If we knew the number of iterations at compile time,
we could completely unroll the reduction
Luckily, the block size is limited by the GPU to 512 threads
Also, we are sticking to power-of-2 block sizes
So we can easily unroll for a fixed block size
But we need to be generic – how can we unroll for block
sizes that we don’t know at compile time?
Templates to the rescue!
CUDA supports C++ template parameters on device and
host functions
25
Unrolling with Templates
Specify block size as a function template parameter:
template <unsigned int blockSize>
__global__ void reduce5(int *g_idata, int *g_odata)
26
Reduction #6: Completely Unrolled
if (blockSize >= 512) {
if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
if (blockSize >= 256) {
if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) {
if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }
if (tid < 32) warpReduce<blockSize>(sdata, tid);
Note: all code in RED will be evaluated at compile time.
Results in a very efficient inner loop!
Template <unsigned int blockSize>
__device__ void warpReduce(volatile int* sdata, int tid) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
27
Invoking Template Kernels
Don’t we still need block size at compile time?
Nope, just a switch statement for 10 possible block sizes:
switch (threads)
{
case 512:
reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 256:
reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 128:
reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 64:
reduce5< 64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 32:
reduce5< 32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 16:
reduce5< 16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 8:
reduce5< 8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 4:
reduce5< 4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 2:
reduce5< 2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 1:
reduce5< 1><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
}
28
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Kernel 3:
sequential addressing
1.722 ms 9.741 GB/s 2.01x 4.68x
Kernel 4:
first add during global load
0.965 ms 17.377 GB/s 1.78x 8.34x
Kernel 5:
unroll last warp
0.536 ms 31.289 GB/s 1.8x 15.01x
Kernel 6:
completely unrolled
0.381 ms 43.996 GB/s 1.41x 21.16x
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
29
Parallel Reduction Complexity
Log(N) parallel steps, each step S does N/2S
independent ops
Step Complexity is O(log N)
For N=2D, performs S[1..D]2D-S = N-1 operations
Work Complexity is O(N) – It is work-efficient
i.e. does not perform more operations than a sequential
algorithm
With P threads physically in parallel (P processors),
time complexity is O(N/P + log N)
Compare to O(N) for sequential reduction
In a thread block, N=P, so O(log N)
30
What About Cost?
Cost of a parallel algorithm is processors time
complexity
Allocate threads instead of processors: O(N) threads
Time complexity is O(log N), so cost is O(N log N) : not
cost efficient!
Brent’s theorem suggests O(N/log N) threads
Each thread does O(log N) sequential work
Then all O(N/log N) threads cooperate for O(log N) steps
Cost = O((N/log N) * log N) = O(N)  cost efficient
Sometimes called algorithm cascading
Can lead to significant speedups in practice
31
Algorithm Cascading
Combine sequential and parallel reduction
Each thread loads and sums multiple elements into
shared memory
Tree-based reduction in shared memory
Brent’s theorem says each thread should sum
O(log n) elements
i.e. 1024 or 2048 elements per block vs. 256
In my experience, beneficial to push it even further
Possibly better latency hiding with more work per thread
More threads per block reduces levels in tree of recursive
kernel invocations
High kernel launch overhead in last levels with few blocks
On G80, best perf with 64-256 blocks of 128 threads
1024-4096 elements per thread
32
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
Reduction #7: Multiple Adds / Thread
Replace load and add of two elements:
With a while loop to add as many as necessary:
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;
while (i < n) {
sdata[tid] += g_idata[i] + g_idata[i+blockSize];
i += gridSize;
}
__syncthreads();
33
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
Reduction #7: Multiple Adds / Thread
Replace load and add of two elements:
With a while loop to add as many as necessary:
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;
while (i < n) {
sdata[tid] += g_idata[i] + g_idata[i+blockSize];
i += gridSize;
}
__syncthreads();
Note: gridSize loop stride
to maintain coalescing!
34
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Kernel 3:
sequential addressing
1.722 ms 9.741 GB/s 2.01x 4.68x
Kernel 4:
first add during global load
0.965 ms 17.377 GB/s 1.78x 8.34x
Kernel 5:
unroll last warp
0.536 ms 31.289 GB/s 1.8x 15.01x
Kernel 6:
completely unrolled
0.381 ms 43.996 GB/s 1.41x 21.16x
Kernel 7:
multiple elements per thread
0.268 ms 62.671 GB/s 1.42x 30.04x
Kernel 7 on 32M elements: 73 GB/s!
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
35
template <unsigned int blockSize>
__device__ void warpReduce(volatile int *sdata, unsigned int tid) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
template <unsigned int blockSize>
__global__ void reduce6(int *g_idata, int *g_odata, unsigned int n) {
extern __shared__ int sdata[];
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + tid;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;
while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }
__syncthreads();
if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }
if (tid < 32) warpReduce(sdata, tid);
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
Final Optimized Kernel
// I guess for global memory, 2 loads in 1 loop good enough
// For shared memory, better load as mush as possible at once (near instruction bottleneck)
36
Performance Comparison
0.01
0.1
1
10
131072
262144
524288
1048576
2097152
4194304
8388608
16777216
33554432
# Elements
Time
(ms)
1: Interleaved Addressing:
Divergent Branches
2: Interleaved Addressing:
Bank Conflicts
3: Sequential Addressing
4: First add during global
load
5: Unroll last warp
6: Completely unroll
7: Multiple elements per
thread (max 64 blocks)
37
Types of optimization
Interesting observation:
Algorithmic optimizations
Changes to addressing, algorithm cascading
11.84x speedup, combined!
Code optimizations
Loop unrolling
2.54x speedup, combined
38
Conclusion
Understand CUDA performance characteristics
Memory coalescing
Divergent branching
Bank conflicts
Latency hiding
Use peak performance metrics to guide optimization
Understand parallel algorithm complexity theory
Know how to identify type of bottleneck
e.g. memory, core computation, or instruction overhead
Optimize your algorithm, then unroll loops
Use template parameters to generate optimal code
Questions: mharris@nvidia.com

Optimizing Parallel Reduction in CUDA : NOTES

  • 1.
    Optimizing Parallel Reductionin CUDA Mark Harris NVIDIA Developer Technology
  • 2.
    2 Parallel Reduction Common andimportant data parallel primitive Easy to implement in CUDA Harder to get it right Serves as a great optimization example We’ll walk step by step through 7 different versions Demonstrates several important optimization strategies
  • 3.
    3 Parallel Reduction Tree-based approachused within each thread block Need to be able to use multiple thread blocks To process very large arrays To keep all multiprocessors on the GPU busy Each thread block reduces a portion of the array But how do we communicate partial results between thread blocks? 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3
  • 4.
    4 Problem: Global Synchronization Ifwe could synchronize across all thread blocks, could easily reduce very large arrays, right? Global sync after each block produces its result Once all blocks reach sync, continue recursively But CUDA has no global synchronization. Why? Expensive to build in hardware for GPUs with high processor count Would force programmer to run fewer blocks (no more than # multiprocessors * # resident blocks / multiprocessor) to avoid deadlock, which may reduce overall efficiency Solution: decompose into multiple kernels Kernel launch serves as a global synchronization point Kernel launch has negligible HW overhead, low SW overhead
  • 5.
    5 Solution: Kernel Decomposition Avoidglobal sync by decomposing computation into multiple kernel invocations In the case of reductions, code for all levels is the same Recursive kernel invocation 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 Level 0: 8 blocks Level 1: 1 block // Already tried this
  • 6.
    6 What is OurOptimization Goal? We should strive to reach GPU peak performance Choose the right metric: GFLOP/s: for compute-bound kernels Bandwidth: for memory-bound kernels Reductions have very low arithmetic intensity 1 flop per element loaded (bandwidth-optimal) Therefore we should strive for peak bandwidth Will use G80 GPU for this example 384-bit memory interface, 900 MHz DDR 384 * 1800 / 8 = 86.4 GB/s
  • 7.
    7 Reduction #1: InterleavedAddressing __global__ void reduce0(int *g_idata, int *g_odata) { extern __shared__ int sdata[]; // each thread loads one element from global to shared mem unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; sdata[tid] = g_idata[i]; __syncthreads(); // do reduction in shared mem for(unsigned int s=1; s < blockDim.x; s *= 2) { if (tid % (2*s) == 0) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } // write result for this block to global mem if (tid == 0) g_odata[blockIdx.x] = sdata[0]; }
  • 8.
    8 Parallel Reduction: InterleavedAddressing 10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 Values (shared memory) 0 2 4 6 8 10 12 14 11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2 Values 0 4 8 12 18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2 Values 0 8 24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 Values 0 41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 Values Thread IDs Step 1 Stride 1 Step 2 Stride 2 Step 3 Stride 4 Step 4 Stride 8 Thread IDs Thread IDs Thread IDs
  • 9.
    9 Reduction #1: InterleavedAddressing __global__ void reduce1(int *g_idata, int *g_odata) { extern __shared__ int sdata[]; // each thread loads one element from global to shared mem unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; sdata[tid] = g_idata[i]; __syncthreads(); // do reduction in shared mem for (unsigned int s=1; s < blockDim.x; s *= 2) { if (tid % (2*s) == 0) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } // write result for this block to global mem if (tid == 0) g_odata[blockIdx.x] = sdata[0]; } Problem: highly divergent warps are very inefficient, and % operator is very slow
  • 10.
    10 Performance for 4Melement reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Note: Block Size = 128 threads for all tests Bandwidth Time (222 ints)
  • 11.
    11 for (unsigned ints=1; s < blockDim.x; s *= 2) { if (tid % (2*s) == 0) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } for (unsigned int s=1; s < blockDim.x; s *= 2) { int index = 2 * s * tid; if (index < blockDim.x) { sdata[index] += sdata[index + s]; } __syncthreads(); } Reduction #2: Interleaved Addressing Just replace divergent branch in inner loop: With strided index and non-divergent branch:
  • 12.
    12 Parallel Reduction: InterleavedAddressing 10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 Values (shared memory) 0 1 2 3 4 5 6 7 11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2 Values 0 1 2 3 18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2 Values 0 1 24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 Values 0 41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 Values Thread IDs Step 1 Stride 1 Step 2 Stride 2 Step 3 Stride 4 Step 4 Stride 8 Thread IDs Thread IDs Thread IDs New Problem: Shared Memory Bank Conflicts
  • 13.
    13 Performance for 4Melement reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Step Speedup Bandwidth Time (222 ints) Cumulative Speedup
  • 14.
    14 Parallel Reduction: SequentialAddressing 10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 Values (shared memory) 0 1 2 3 4 5 6 7 8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2 Values 0 1 2 3 8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2 Values 0 1 21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2 Values 0 41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2 Values Thread IDs Step 1 Stride 8 Step 2 Stride 4 Step 3 Stride 2 Step 4 Stride 1 Thread IDs Thread IDs Thread IDs Sequential addressing is conflict free
  • 15.
    15 for (unsigned ints=1; s < blockDim.x; s *= 2) { int index = 2 * s * tid; if (index < blockDim.x) { sdata[index] += sdata[index + s]; } __syncthreads(); } for (unsigned int s=blockDim.x/2; s>0; s>>=1) { if (tid < s) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } Reduction #3: Sequential Addressing Just replace strided indexing in inner loop: With reversed loop and threadID-based indexing: // Already using this
  • 16.
    16 Performance for 4Melement reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Kernel 3: sequential addressing 1.722 ms 9.741 GB/s 2.01x 4.68x Step Speedup Bandwidth Time (222 ints) Cumulative Speedup Insert text here
  • 17.
    17 for (unsigned ints=blockDim.x/2; s>0; s>>=1) { if (tid < s) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } Idle Threads Problem: Half of the threads are idle on first loop iteration! This is wasteful…
  • 18.
    18 // each threadloads one element from global to shared mem unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; sdata[tid] = g_idata[i]; __syncthreads(); // perform first level of reduction, // reading from global memory, writing to shared memory unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x; sdata[tid] = g_idata[i] + g_idata[i+blockDim.x]; __syncthreads(); Reduction #4: First Add During Load Halve the number of blocks, and replace single load: With two loads and first add of the reduction:
  • 19.
    19 Performance for 4Melement reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Kernel 3: sequential addressing 1.722 ms 9.741 GB/s 2.01x 4.68x Kernel 4: first add during global load 0.965 ms 17.377 GB/s 1.78x 8.34x Step Speedup Bandwidth Time (222 ints) Cumulative Speedup
  • 20.
    20 Instruction Bottleneck At 17GB/s, we’re far from bandwidth bound And we know reduction has low arithmetic intensity Therefore a likely bottleneck is instruction overhead Ancillary instructions that are not loads, stores, or arithmetic for the core computation In other words: address arithmetic and loop overhead Strategy: unroll loops
  • 21.
    21 Unrolling the LastWarp As reduction proceeds, # “active” threads decreases When s <= 32, we have only one warp left Instructions are SIMD synchronous within a warp That means when s <= 32: We don’t need to __syncthreads() We don’t need “if (tid < s)” because it doesn’t save any work Let’s unroll the last 6 iterations of the inner loop
  • 22.
    __device__ void warpReduce(volatileint* sdata, int tid) { sdata[tid] += sdata[tid + 32]; sdata[tid] += sdata[tid + 16]; sdata[tid] += sdata[tid + 8]; sdata[tid] += sdata[tid + 4]; sdata[tid] += sdata[tid + 2]; sdata[tid] += sdata[tid + 1]; } // later… for (unsigned int s=blockDim.x/2; s>32; s>>=1) { if (tid < s) sdata[tid] += sdata[tid + s]; __syncthreads(); } if (tid < 32) warpReduce(sdata, tid); 22 Reduction #5: Unroll the Last Warp Note: This saves useless work in all warps, not just the last one! Without unrolling, all warps execute every iteration of the for loop and if statement IMPORTANT: For this to be correct, we must use the “volatile” keyword!
  • 23.
    23 Performance for 4Melement reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Kernel 3: sequential addressing 1.722 ms 9.741 GB/s 2.01x 4.68x Kernel 4: first add during global load 0.965 ms 17.377 GB/s 1.78x 8.34x Kernel 5: unroll last warp 0.536 ms 31.289 GB/s 1.8x 15.01x Step Speedup Bandwidth Time (222 ints) Cumulative Speedup
  • 24.
    24 Complete Unrolling If weknew the number of iterations at compile time, we could completely unroll the reduction Luckily, the block size is limited by the GPU to 512 threads Also, we are sticking to power-of-2 block sizes So we can easily unroll for a fixed block size But we need to be generic – how can we unroll for block sizes that we don’t know at compile time? Templates to the rescue! CUDA supports C++ template parameters on device and host functions
  • 25.
    25 Unrolling with Templates Specifyblock size as a function template parameter: template <unsigned int blockSize> __global__ void reduce5(int *g_idata, int *g_odata)
  • 26.
    26 Reduction #6: CompletelyUnrolled if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); } if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); } if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); } if (tid < 32) warpReduce<blockSize>(sdata, tid); Note: all code in RED will be evaluated at compile time. Results in a very efficient inner loop! Template <unsigned int blockSize> __device__ void warpReduce(volatile int* sdata, int tid) { if (blockSize >= 64) sdata[tid] += sdata[tid + 32]; if (blockSize >= 32) sdata[tid] += sdata[tid + 16]; if (blockSize >= 16) sdata[tid] += sdata[tid + 8]; if (blockSize >= 8) sdata[tid] += sdata[tid + 4]; if (blockSize >= 4) sdata[tid] += sdata[tid + 2]; if (blockSize >= 2) sdata[tid] += sdata[tid + 1]; }
  • 27.
    27 Invoking Template Kernels Don’twe still need block size at compile time? Nope, just a switch statement for 10 possible block sizes: switch (threads) { case 512: reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 256: reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 128: reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 64: reduce5< 64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 32: reduce5< 32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 16: reduce5< 16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 8: reduce5< 8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 4: reduce5< 4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 2: reduce5< 2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 1: reduce5< 1><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; }
  • 28.
    28 Performance for 4Melement reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Kernel 3: sequential addressing 1.722 ms 9.741 GB/s 2.01x 4.68x Kernel 4: first add during global load 0.965 ms 17.377 GB/s 1.78x 8.34x Kernel 5: unroll last warp 0.536 ms 31.289 GB/s 1.8x 15.01x Kernel 6: completely unrolled 0.381 ms 43.996 GB/s 1.41x 21.16x Step Speedup Bandwidth Time (222 ints) Cumulative Speedup
  • 29.
    29 Parallel Reduction Complexity Log(N)parallel steps, each step S does N/2S independent ops Step Complexity is O(log N) For N=2D, performs S[1..D]2D-S = N-1 operations Work Complexity is O(N) – It is work-efficient i.e. does not perform more operations than a sequential algorithm With P threads physically in parallel (P processors), time complexity is O(N/P + log N) Compare to O(N) for sequential reduction In a thread block, N=P, so O(log N)
  • 30.
    30 What About Cost? Costof a parallel algorithm is processors time complexity Allocate threads instead of processors: O(N) threads Time complexity is O(log N), so cost is O(N log N) : not cost efficient! Brent’s theorem suggests O(N/log N) threads Each thread does O(log N) sequential work Then all O(N/log N) threads cooperate for O(log N) steps Cost = O((N/log N) * log N) = O(N)  cost efficient Sometimes called algorithm cascading Can lead to significant speedups in practice
  • 31.
    31 Algorithm Cascading Combine sequentialand parallel reduction Each thread loads and sums multiple elements into shared memory Tree-based reduction in shared memory Brent’s theorem says each thread should sum O(log n) elements i.e. 1024 or 2048 elements per block vs. 256 In my experience, beneficial to push it even further Possibly better latency hiding with more work per thread More threads per block reduces levels in tree of recursive kernel invocations High kernel launch overhead in last levels with few blocks On G80, best perf with 64-256 blocks of 128 threads 1024-4096 elements per thread
  • 32.
    32 unsigned int tid= threadIdx.x; unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x; sdata[tid] = g_idata[i] + g_idata[i+blockDim.x]; __syncthreads(); Reduction #7: Multiple Adds / Thread Replace load and add of two elements: With a while loop to add as many as necessary: unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x; unsigned int gridSize = blockSize*2*gridDim.x; sdata[tid] = 0; while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; } __syncthreads();
  • 33.
    33 unsigned int tid= threadIdx.x; unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x; sdata[tid] = g_idata[i] + g_idata[i+blockDim.x]; __syncthreads(); Reduction #7: Multiple Adds / Thread Replace load and add of two elements: With a while loop to add as many as necessary: unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x; unsigned int gridSize = blockSize*2*gridDim.x; sdata[tid] = 0; while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; } __syncthreads(); Note: gridSize loop stride to maintain coalescing!
  • 34.
    34 Performance for 4Melement reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Kernel 3: sequential addressing 1.722 ms 9.741 GB/s 2.01x 4.68x Kernel 4: first add during global load 0.965 ms 17.377 GB/s 1.78x 8.34x Kernel 5: unroll last warp 0.536 ms 31.289 GB/s 1.8x 15.01x Kernel 6: completely unrolled 0.381 ms 43.996 GB/s 1.41x 21.16x Kernel 7: multiple elements per thread 0.268 ms 62.671 GB/s 1.42x 30.04x Kernel 7 on 32M elements: 73 GB/s! Step Speedup Bandwidth Time (222 ints) Cumulative Speedup
  • 35.
    35 template <unsigned intblockSize> __device__ void warpReduce(volatile int *sdata, unsigned int tid) { if (blockSize >= 64) sdata[tid] += sdata[tid + 32]; if (blockSize >= 32) sdata[tid] += sdata[tid + 16]; if (blockSize >= 16) sdata[tid] += sdata[tid + 8]; if (blockSize >= 8) sdata[tid] += sdata[tid + 4]; if (blockSize >= 4) sdata[tid] += sdata[tid + 2]; if (blockSize >= 2) sdata[tid] += sdata[tid + 1]; } template <unsigned int blockSize> __global__ void reduce6(int *g_idata, int *g_odata, unsigned int n) { extern __shared__ int sdata[]; unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*(blockSize*2) + tid; unsigned int gridSize = blockSize*2*gridDim.x; sdata[tid] = 0; while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; } __syncthreads(); if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); } if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); } if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); } if (tid < 32) warpReduce(sdata, tid); if (tid == 0) g_odata[blockIdx.x] = sdata[0]; } Final Optimized Kernel // I guess for global memory, 2 loads in 1 loop good enough // For shared memory, better load as mush as possible at once (near instruction bottleneck)
  • 36.
    36 Performance Comparison 0.01 0.1 1 10 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 # Elements Time (ms) 1:Interleaved Addressing: Divergent Branches 2: Interleaved Addressing: Bank Conflicts 3: Sequential Addressing 4: First add during global load 5: Unroll last warp 6: Completely unroll 7: Multiple elements per thread (max 64 blocks)
  • 37.
    37 Types of optimization Interestingobservation: Algorithmic optimizations Changes to addressing, algorithm cascading 11.84x speedup, combined! Code optimizations Loop unrolling 2.54x speedup, combined
  • 38.
    38 Conclusion Understand CUDA performancecharacteristics Memory coalescing Divergent branching Bank conflicts Latency hiding Use peak performance metrics to guide optimization Understand parallel algorithm complexity theory Know how to identify type of bottleneck e.g. memory, core computation, or instruction overhead Optimize your algorithm, then unroll loops Use template parameters to generate optimal code Questions: mharris@nvidia.com