1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2025 Christoph Hellwig
*/
#include <linux/blk-integrity.h>
#include <linux/blk-mq-dma.h>
#include "blk.h"
struct phys_vec {
phys_addr_t paddr;
u32 len;
};
static bool __blk_map_iter_next(struct blk_map_iter *iter)
{
if (iter->iter.bi_size)
return true;
if (!iter->bio || !iter->bio->bi_next)
return false;
iter->bio = iter->bio->bi_next;
if (iter->is_integrity) {
iter->iter = bio_integrity(iter->bio)->bip_iter;
iter->bvecs = bio_integrity(iter->bio)->bip_vec;
} else {
iter->iter = iter->bio->bi_iter;
iter->bvecs = iter->bio->bi_io_vec;
}
return true;
}
static bool blk_map_iter_next(struct request *req, struct blk_map_iter *iter,
struct phys_vec *vec)
{
unsigned int max_size;
struct bio_vec bv;
if (!iter->iter.bi_size)
return false;
bv = mp_bvec_iter_bvec(iter->bvecs, iter->iter);
vec->paddr = bvec_phys(&bv);
max_size = get_max_segment_size(&req->q->limits, vec->paddr, UINT_MAX);
bv.bv_len = min(bv.bv_len, max_size);
bvec_iter_advance_single(iter->bvecs, &iter->iter, bv.bv_len);
/*
* If we are entirely done with this bi_io_vec entry, check if the next
* one could be merged into it. This typically happens when moving to
* the next bio, but some callers also don't pack bvecs tight.
*/
while (!iter->iter.bi_size || !iter->iter.bi_bvec_done) {
struct bio_vec next;
if (!__blk_map_iter_next(iter))
break;
next = mp_bvec_iter_bvec(iter->bvecs, iter->iter);
if (bv.bv_len + next.bv_len > max_size ||
!biovec_phys_mergeable(req->q, &bv, &next))
break;
bv.bv_len += next.bv_len;
bvec_iter_advance_single(iter->bvecs, &iter->iter, next.bv_len);
}
vec->len = bv.bv_len;
return true;
}
/*
* The IOVA-based DMA API wants to be able to coalesce at the minimal IOMMU page
* size granularity (which is guaranteed to be <= PAGE_SIZE and usually 4k), so
* we need to ensure our segments are aligned to this as well.
*
* Note that there is no point in using the slightly more complicated IOVA based
* path for single segment mappings.
*/
static inline bool blk_can_dma_map_iova(struct request *req,
struct device *dma_dev)
{
return !((queue_virt_boundary(req->q) + 1) &
dma_get_merge_boundary(dma_dev));
}
static bool blk_dma_map_bus(struct blk_dma_iter *iter, struct phys_vec *vec)
{
iter->addr = pci_p2pdma_bus_addr_map(&iter->p2pdma, vec->paddr);
iter->len = vec->len;
return true;
}
static bool blk_dma_map_direct(struct request *req, struct device *dma_dev,
struct blk_dma_iter *iter, struct phys_vec *vec)
{
iter->addr = dma_map_page(dma_dev, phys_to_page(vec->paddr),
offset_in_page(vec->paddr), vec->len, rq_dma_dir(req));
if (dma_mapping_error(dma_dev, iter->addr)) {
iter->status = BLK_STS_RESOURCE;
return false;
}
iter->len = vec->len;
return true;
}
static bool blk_rq_dma_map_iova(struct request *req, struct device *dma_dev,
struct dma_iova_state *state, struct blk_dma_iter *iter,
struct phys_vec *vec)
{
enum dma_data_direction dir = rq_dma_dir(req);
unsigned int mapped = 0;
int error;
iter->addr = state->addr;
iter->len = dma_iova_size(state);
do {
error = dma_iova_link(dma_dev, state, vec->paddr, mapped,
vec->len, dir, 0);
if (error)
break;
mapped += vec->len;
} while (blk_map_iter_next(req, &iter->iter, vec));
error = dma_iova_sync(dma_dev, state, 0, mapped);
if (error) {
iter->status = errno_to_blk_status(error);
return false;
}
return true;
}
static inline void blk_rq_map_iter_init(struct request *rq,
struct blk_map_iter *iter)
{
struct bio *bio = rq->bio;
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
*iter = (struct blk_map_iter) {
.bvecs = &rq->special_vec,
.iter = {
.bi_size = rq->special_vec.bv_len,
}
};
} else if (bio) {
*iter = (struct blk_map_iter) {
.bio = bio,
.bvecs = bio->bi_io_vec,
.iter = bio->bi_iter,
};
} else {
/* the internal flush request may not have bio attached */
*iter = (struct blk_map_iter) {};
}
}
static bool blk_dma_map_iter_start(struct request *req, struct device *dma_dev,
struct dma_iova_state *state, struct blk_dma_iter *iter,
unsigned int total_len)
{
struct phys_vec vec;
memset(&iter->p2pdma, 0, sizeof(iter->p2pdma));
iter->status = BLK_STS_OK;
/*
* Grab the first segment ASAP because we'll need it to check for P2P
* transfers.
*/
if (!blk_map_iter_next(req, &iter->iter, &vec))
return false;
switch (pci_p2pdma_state(&iter->p2pdma, dma_dev,
phys_to_page(vec.paddr))) {
case PCI_P2PDMA_MAP_BUS_ADDR:
if (iter->iter.is_integrity)
bio_integrity(req->bio)->bip_flags |= BIP_P2P_DMA;
else
req->cmd_flags |= REQ_P2PDMA;
return blk_dma_map_bus(iter, &vec);
case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
/*
* P2P transfers through the host bridge are treated the
* same as non-P2P transfers below and during unmap.
*/
case PCI_P2PDMA_MAP_NONE:
break;
default:
iter->status = BLK_STS_INVAL;
return false;
}
if (blk_can_dma_map_iova(req, dma_dev) &&
dma_iova_try_alloc(dma_dev, state, vec.paddr, total_len))
return blk_rq_dma_map_iova(req, dma_dev, state, iter, &vec);
return blk_dma_map_direct(req, dma_dev, iter, &vec);
}
/**
* blk_rq_dma_map_iter_start - map the first DMA segment for a request
* @req: request to map
* @dma_dev: device to map to
* @state: DMA IOVA state
* @iter: block layer DMA iterator
*
* Start DMA mapping @req to @dma_dev. @state and @iter are provided by the
* caller and don't need to be initialized. @state needs to be stored for use
* at unmap time, @iter is only needed at map time.
*
* Returns %false if there is no segment to map, including due to an error, or
* %true ft it did map a segment.
*
* If a segment was mapped, the DMA address for it is returned in @iter.addr and
* the length in @iter.len. If no segment was mapped the status code is
* returned in @iter.status.
*
* The caller can call blk_rq_dma_map_coalesce() to check if further segments
* need to be mapped after this, or go straight to blk_rq_dma_map_iter_next()
* to try to map the following segments.
*/
bool blk_rq_dma_map_iter_start(struct request *req, struct device *dma_dev,
struct dma_iova_state *state, struct blk_dma_iter *iter)
{
blk_rq_map_iter_init(req, &iter->iter);
return blk_dma_map_iter_start(req, dma_dev, state, iter,
blk_rq_payload_bytes(req));
}
EXPORT_SYMBOL_GPL(blk_rq_dma_map_iter_start);
/**
* blk_rq_dma_map_iter_next - map the next DMA segment for a request
* @req: request to map
* @dma_dev: device to map to
* @state: DMA IOVA state
* @iter: block layer DMA iterator
*
* Iterate to the next mapping after a previous call to
* blk_rq_dma_map_iter_start(). See there for a detailed description of the
* arguments.
*
* Returns %false if there is no segment to map, including due to an error, or
* %true ft it did map a segment.
*
* If a segment was mapped, the DMA address for it is returned in @iter.addr and
* the length in @iter.len. If no segment was mapped the status code is
* returned in @iter.status.
*/
bool blk_rq_dma_map_iter_next(struct request *req, struct device *dma_dev,
struct dma_iova_state *state, struct blk_dma_iter *iter)
{
struct phys_vec vec;
if (!blk_map_iter_next(req, &iter->iter, &vec))
return false;
if (iter->p2pdma.map == PCI_P2PDMA_MAP_BUS_ADDR)
return blk_dma_map_bus(iter, &vec);
return blk_dma_map_direct(req, dma_dev, iter, &vec);
}
EXPORT_SYMBOL_GPL(blk_rq_dma_map_iter_next);
static inline struct scatterlist *
blk_next_sg(struct scatterlist **sg, struct scatterlist *sglist)
{
if (!*sg)
return sglist;
/*
* If the driver previously mapped a shorter list, we could see a
* termination bit prematurely unless it fully inits the sg table
* on each mapping. We KNOW that there must be more entries here
* or the driver would be buggy, so force clear the termination bit
* to avoid doing a full sg_init_table() in drivers for each command.
*/
sg_unmark_end(*sg);
return sg_next(*sg);
}
/*
* Map a request to scatterlist, return number of sg entries setup. Caller
* must make sure sg can hold rq->nr_phys_segments entries.
*/
int __blk_rq_map_sg(struct request *rq, struct scatterlist *sglist,
struct scatterlist **last_sg)
{
struct blk_map_iter iter;
struct phys_vec vec;
int nsegs = 0;
blk_rq_map_iter_init(rq, &iter);
while (blk_map_iter_next(rq, &iter, &vec)) {
*last_sg = blk_next_sg(last_sg, sglist);
sg_set_page(*last_sg, phys_to_page(vec.paddr), vec.len,
offset_in_page(vec.paddr));
nsegs++;
}
if (*last_sg)
sg_mark_end(*last_sg);
/*
* Something must have been wrong if the figured number of
* segment is bigger than number of req's physical segments
*/
WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
return nsegs;
}
EXPORT_SYMBOL(__blk_rq_map_sg);
#ifdef CONFIG_BLK_DEV_INTEGRITY
/**
* blk_rq_integrity_dma_map_iter_start - map the first integrity DMA segment
* for a request
* @req: request to map
* @dma_dev: device to map to
* @state: DMA IOVA state
* @iter: block layer DMA iterator
*
* Start DMA mapping @req integrity data to @dma_dev. @state and @iter are
* provided by the caller and don't need to be initialized. @state needs to be
* stored for use at unmap time, @iter is only needed at map time.
*
* Returns %false if there is no segment to map, including due to an error, or
* %true if it did map a segment.
*
* If a segment was mapped, the DMA address for it is returned in @iter.addr
* and the length in @iter.len. If no segment was mapped the status code is
* returned in @iter.status.
*
* The caller can call blk_rq_dma_map_coalesce() to check if further segments
* need to be mapped after this, or go straight to blk_rq_dma_map_iter_next()
* to try to map the following segments.
*/
bool blk_rq_integrity_dma_map_iter_start(struct request *req,
struct device *dma_dev, struct dma_iova_state *state,
struct blk_dma_iter *iter)
{
unsigned len = bio_integrity_bytes(&req->q->limits.integrity,
blk_rq_sectors(req));
struct bio *bio = req->bio;
iter->iter = (struct blk_map_iter) {
.bio = bio,
.iter = bio_integrity(bio)->bip_iter,
.bvecs = bio_integrity(bio)->bip_vec,
.is_integrity = true,
};
return blk_dma_map_iter_start(req, dma_dev, state, iter, len);
}
EXPORT_SYMBOL_GPL(blk_rq_integrity_dma_map_iter_start);
/**
* blk_rq_integrity_dma_map_iter_start - map the next integrity DMA segment for
* a request
* @req: request to map
* @dma_dev: device to map to
* @state: DMA IOVA state
* @iter: block layer DMA iterator
*
* Iterate to the next integrity mapping after a previous call to
* blk_rq_integrity_dma_map_iter_start(). See there for a detailed description
* of the arguments.
*
* Returns %false if there is no segment to map, including due to an error, or
* %true if it did map a segment.
*
* If a segment was mapped, the DMA address for it is returned in @iter.addr and
* the length in @iter.len. If no segment was mapped the status code is
* returned in @iter.status.
*/
bool blk_rq_integrity_dma_map_iter_next(struct request *req,
struct device *dma_dev, struct blk_dma_iter *iter)
{
struct phys_vec vec;
if (!blk_map_iter_next(req, &iter->iter, &vec))
return false;
if (iter->p2pdma.map == PCI_P2PDMA_MAP_BUS_ADDR)
return blk_dma_map_bus(iter, &vec);
return blk_dma_map_direct(req, dma_dev, iter, &vec);
}
EXPORT_SYMBOL_GPL(blk_rq_integrity_dma_map_iter_next);
/**
* blk_rq_map_integrity_sg - Map integrity metadata into a scatterlist
* @rq: request to map
* @sglist: target scatterlist
*
* Description: Map the integrity vectors in request into a
* scatterlist. The scatterlist must be big enough to hold all
* elements. I.e. sized using blk_rq_count_integrity_sg() or
* rq->nr_integrity_segments.
*/
int blk_rq_map_integrity_sg(struct request *rq, struct scatterlist *sglist)
{
struct request_queue *q = rq->q;
struct scatterlist *sg = NULL;
struct bio *bio = rq->bio;
unsigned int segments = 0;
struct phys_vec vec;
struct blk_map_iter iter = {
.bio = bio,
.iter = bio_integrity(bio)->bip_iter,
.bvecs = bio_integrity(bio)->bip_vec,
.is_integrity = true,
};
while (blk_map_iter_next(rq, &iter, &vec)) {
sg = blk_next_sg(&sg, sglist);
sg_set_page(sg, phys_to_page(vec.paddr), vec.len,
offset_in_page(vec.paddr));
segments++;
}
if (sg)
sg_mark_end(sg);
/*
* Something must have been wrong if the figured number of segment
* is bigger than number of req's physical integrity segments
*/
BUG_ON(segments > rq->nr_integrity_segments);
BUG_ON(segments > queue_max_integrity_segments(q));
return segments;
}
EXPORT_SYMBOL(blk_rq_map_integrity_sg);
#endif
|