How do you figure out what truly matters to users when you’ve got a long list of features, benefits, or design options - but only a limited sample size and even less time? A lot of UX researchers use Best-Worst Scaling (or MaxDiff) to tackle this. It’s a great method: simple for participants, easy to analyze, and far better than traditional rating scales. But when the research question goes beyond basic prioritization - like understanding user segments, handling optional features, factoring in pricing, or capturing uncertainty - MaxDiff starts to show its limits. That’s when more advanced methods come in, and they’re often more accessible than people think. For example, Anchored MaxDiff adds a must-have vs. nice-to-have dimension that turns relative rankings into more actionable insights. Adaptive Choice-Based Conjoint goes further by learning what matters most to each respondent and adapting the questions accordingly - ideal when you're juggling 10+ attributes. Menu-Based Conjoint works especially well for products with flexible options or bundles, like SaaS platforms or modular hardware, helping you see what users are likely to select together. If you suspect different mental models among your users, Latent Class Models can uncover hidden segments by clustering users based on their underlying choice patterns. TURF analysis is a lifesaver when you need to pick a few features that will have the widest reach across your audience, often used in roadmap planning. And if you're trying to account for how confident or honest people are in their responses, Bayesian Truth Serum adds a layer of statistical correction that can help de-bias sensitive data. Want to tie preferences to price? Gabor-Granger techniques and price-anchored conjoint models give you insight into willingness-to-pay without running a full pricing study. These methods all work well with small-to-medium sample sizes, especially when paired with Hierarchical Bayes or latent class estimation, making them a perfect fit for fast-paced UX environments where stakes are high and clarity matters.
User Experience Research Methods for Tech Products
Explore top LinkedIn content from expert professionals.
Summary
Understanding user needs is essential for designing tech products that truly resonate. User experience research methods, such as Best-Worst Scaling, Conjoint Analysis, or observational studies, help uncover actionable insights about what users value most—beyond what they may explicitly express.
- Consider advanced tools: Use methods like Adaptive Choice-Based Conjoint to learn individual user preferences or TURF analysis to identify features that satisfy the widest audience.
- Observe real behavior: Conduct contextual inquiries or analyze behavior logs to understand how users interact with your product in natural environments, uncovering challenges they might not articulate.
- Test with actions: Rely on practical experiments, such as pre-orders or prototype testing, to measure what users actually do rather than solely what they say.
-
-
While it can be easily believed that customers are the ultimate experts about their own needs, there are ways to gain insights and knowledge that customers may not be aware of or able to articulate directly. While customers are the ultimate source of truth about their needs, product managers can complement this knowledge by employing a combination of research, data analysis, and empathetic understanding to gain a more comprehensive understanding of customer needs and expectations. The goal is not to know more than customers but to use various tools and methods to gain insights that can lead to building better products and delivering exceptional user experiences. ➡️ User Research: Conducting thorough user research, such as interviews, surveys, and observational studies, can reveal underlying needs and pain points that customers may not have fully recognized or articulated. By learning from many users, we gain holistic insights and deeper insights into their motivations and behaviors. ➡️ Data Analysis: Analyzing user data, including behavioral data and usage patterns, can provide valuable insights into customer preferences and pain points. By identifying trends and patterns in the data, product managers can make informed decisions about what features or improvements are most likely to address customer needs effectively. ➡️ Contextual Inquiry: Observing customers in their real-life environment while using the product can uncover valuable insights into their needs and challenges. Contextual inquiry helps product managers understand the context in which customers use the product and how it fits into their daily lives. ➡️ Competitor Analysis: By studying competitors and their products, product managers can identify gaps in the market and potential unmet needs that customers may not even be aware of. Understanding what competitors offer can inspire product improvements and innovation. ➡️ Surfacing Implicit Needs: Sometimes, customers may not be able to express their needs explicitly, but through careful analysis and empathetic understanding, product managers can infer these implicit needs. This requires the ability to interpret feedback, observe behaviors, and understand the context in which customers use the product. ➡️ Iterative Prototyping and Testing: Continuously iterating and testing product prototypes with users allows product managers to gather feedback and refine the product based on real-world usage. Through this iterative process, product managers can uncover deeper customer needs and iteratively improve the product to meet those needs effectively. ➡️ Expertise in the Domain: Product managers, industry thought leaders, academic researchers, and others with deep domain knowledge and expertise can anticipate customer needs based on industry trends, best practices, and a comprehensive understanding of the market. #productinnovation #discovery #productmanagement #productleadership
-
Your UX research is lying to you. And no, I'm not talking about small data inconsistencies. I've seen founders blow $100K+ on product features their users "desperately wanted" only to face 0% adoption. Most research methods are fundamentally flawed because humans are terrible at predicting their own behavior. Here's the TRUTH framework I've used to get accurate user insights: T - Test with money, not words • Never ask "would you use this?" • Instead: "Here's a pre-order link for $50" • Watch what they do, not what they say R - Real environment observations • Stop doing sterile lab tests • Start shadowing users in their natural habitat • Record their frustrations, not their feedback U - Unscripted conversations • Ditch your rigid question list • Let users go off on tangents • Their random rants reveal gold T - Track behavior logs • Implement analytics BEFORE research • Compare what users say vs. what they do • Look for patterns, not preferences H - Hidden pain mining • Users can't tell you their problems • But they'll show you through workarounds • Document their "hacks" - that's where innovation lives STOP: • Running bias-filled focus groups • Asking leading questions • Taking feedback at face value • Rushing to build based on opinions START: • Following the TRUTH framework • Measuring actions over words • Building only what users prove they need PS: Remember, Henry Ford said if he asked people what they wanted, they would have said "faster horses." Don't ask what they want. Watch what they do. Follow me, John Balboa. I swear I'm friendly and I won't detach your components.