How to Make Data Visualizations User-Friendly

Explore top LinkedIn content from expert professionals.

Summary

Making data visualizations user-friendly means presenting information clearly and effectively so that it’s easy for your audience to understand and engage with the insights. This involves simplifying designs, tailoring visuals to the audience, and ensuring key messages stand out.

  • Simplify your visuals: Remove unnecessary elements like excessive lines, labels, or decorations that don’t contribute to the message. A clean design makes your data easy to interpret.
  • Highlight key insights: Use colors, annotations, or bold elements to draw attention to the most important data points and guide your audience’s focus.
  • Tailor to your audience: Understand who will view your visualization and align your design with their needs, whether they prefer detailed metrics or high-level summaries.
Summarized by AI based on LinkedIn member posts
  • Most plots fail before they even leave the notebook. Too much clutter. Too many colors. Too little context. I have a stack of visualization books that teach theory, but none of them walk through the tools. In Effective Visualizations, I aim to fix that. I introduce the CLEAR framework—a simple checklist to rescue your charts from confusion and make them resonate: Color: Use color sparingly and intentionally. Highlight what matters. Avoid rainbow palettes that dilute your message. Limit plot type: Just because you can make a 3D exploding donut chart doesn’t mean you should. The simplest plot that answers your question is usually the best. Explain plot: Add clear labels, titles. Remove legends! If you need a decoder ring to read it, you’re not done. Audience: Know who you’re talking to. Executives care about different details than data scientists. Tailor your visuals accordingly. References: Show your sources. Data without provenance erodes trust. All done in the most popular language data folks use today, Python! When you build visuals with CLEAR in mind, your plots stop being decorations and start being arguments—concise, credible, and persuasive.

  • View profile for Kevin Hartman

    Associate Teaching Professor at the University of Notre Dame, Former Chief Analytics Strategist at Google, Author "Digital Marketing Analytics: In Theory And In Practice"

    23,959 followers

    Want to create better dataviz? Before you call your next data visualization complete, make sure its passes these three tests: 1. The Spartan Test: Strip it down. Ruthlessly assess every element in your chart. If removing something doesn’t change the message, it’s clutter. Clear visuals build trust — give your audience only what they need. 2. The Peek Test: Look away for 5 seconds, then glance back at your visual. Where does your eye go first? Chances are, that’s where your audience will focus too. Adjust until attention is drawn to the key insight. 3. The Colleague Test: Think it’s perfect? Share it with a colleague who hasn’t seen the analysis. Provide minimal context and give them 10-15 seconds to interpret. Ask what they take away — does it match your intent? Nail these three, and your data visualization will not just look good — it will communicate clearly and effectively. Three passing grades means it's ready to be presented. Art+Science Analytics Institute | University of Notre Dame | University of Notre Dame - Mendoza College of Business | University of Illinois Urbana-Champaign | University of Chicago | D'Amore-McKim School of Business at Northeastern University | ELVTR | Grow with Google - Data Analytics #Analytics #DataStorytelling

  • View profile for Sohan Sethi

    I Post FREE Job Search Tips & Resources | 100K LinkedIn | Data Analytics Manager @ HCSC | Co-founded 2 Startups By 20 | Featured on TEDx, CNBC, Business Insider and Many More!

    122,311 followers

    8 out of 10 analysts struggle with delivering impactful data visualizations. Here are five tips that I learned through my experience that can improve your visuals immensely: 1. Know Your Stakeholder's Requirements: Before diving into charts and graphs, understand who you're speaking to. Tailor your visuals to match their expertise and interest levels. A clear understanding of your audience ensures your message hits the right notes. For executives, I try sticking to a high-level overview by providing summary charts like a KPI dashboard. On the other hand, for front-line employees, I prefer detailed charts depicting day-to-day operational metrics. 2. Avoid Chart Junk: Embrace the beauty of simplicity. Avoid clutter and unnecessary embellishments. A clean, uncluttered visualization ensures that your message shines through without distractions. I focus on removing excessive gridlines, and unnecessary decorations while conveying the information with clarity. Instead of overwhelming your audience with unnecessary embellishments, opt for a clean, straightforward line chart displaying monthly trends. 3. Choose The Right Color Palette: Colors evoke emotions and convey messages. I prefer using a consistent color scheme across all my dashboards that align with my brand or the narrative. Using a consistent color scheme not only aligns with your brand but also aids in quick comprehension. For instance, use distinct colors for important data points, like revenue spikes or project milestones. 4. Highlight Key Elements: Guide your audience's attention by emphasizing critical data points. Whether it's through color, annotations, or positioning, make sure your audience doesn't miss the most important insights. Imagine presenting a market analysis with a scatter plot showing customer satisfaction and market share. By using bold colors to highlight a specific product or region, coupled with annotations explaining notable data points, you can guide your audience's focus. 5. Tell A Story With Your Data: Transform your numbers into narratives. Weave a compelling story that guides your audience through insights. A good data visualization isn't just a display; it's a journey that simplifies complexity. Recently I faced a scenario where I was presenting productivity metrics. Instead of just displaying a bar chart with numbers, I crafted a visual story. I started with the challenge faced, used line charts to show performance fluctuations, and concluded with a bar chart illustrating the positive impact of a recent strategy. This narrative approach helped my audience connect emotionally with the data, making it more memorable and actionable. Finally, remember that the goal of data visualization is to communicate complex information in a way that is easily understandable and memorable. It's both an art and a science, so keep experimenting and evolving. What are your go-to tips for crafting effective data visualizations? Share your insights in the comments below!

Explore categories