Your AI chatbot is killing deals. Every day. You spent months implementing it. Trained it on your FAQ database. Deployed it across your website. Now it greets every visitor with enthusiasm. And converts almost none of them. Here's what's actually happening: Your chatbot asks too many questions ↳ Visitors abandon after the third question ↳ Qualification feels like an interrogation ↳ Simple problems become complex conversations It gives generic responses to specific problems ↳ "Our product is great for businesses like yours" ↳ No mention of visitor's actual industry or pain point ↳ Sounds like every other chatbot they've encountered It doesn't know when to shut up ↳ Interrupts visitors trying to browse ↳ Pops up during checkout processes ↳ Triggers at the wrong moments in the buyer journey It can't hand off to humans smoothly ↳ Forces visitors to restart conversations ↳ Loses context when transferring to sales ↳ Creates friction instead of removing it The chatbots converting 15%+ do this differently: They personalize based on visitor behavior ↳ "I see you're looking at our enterprise features" ↳ Reference specific pages or content viewed ↳ Tailor responses to demonstrated interest They ask one perfect question ↳ "What's your biggest challenge with [specific problem]?" ↳ Get visitors talking about pain points ↳ Skip generic qualification scripts They know when to step aside ↳ Silent during checkout processes ↳ Appear only when visitors show confusion signals ↳ Respect the natural buying flow They seamlessly connect to sales ↳ Schedule meetings directly in calendar ↳ Pass full conversation context to humans ↳ Continue the conversation, don't restart it Your conversion fixes: Reduce qualification to one key question. Personalize responses using page context. Time chatbot appearance based on behavior signals. Create smooth handoffs with conversation continuity. Your chatbot should feel like a helpful human. Not a persistent robot. Found this helpful? Follow Arturo Ferreira and repost.
Best Practices for User Experience in Chatbot Interfaces
Explore top LinkedIn content from expert professionals.
Summary
Creating chatbots with excellent user experience requires thoughtful design that prioritizes seamless interactions, personalization, and user convenience. By focusing on how users naturally engage with digital tools, businesses can ensure their chatbots are helpful rather than disruptive.
- Prioritize personalization: Tailor chatbot responses based on user actions, like pages viewed or specific queries, to make interactions feel relevant and human.
- Design intuitive workflows: Integrate chatbots into existing systems and ensure they align with user behaviors, minimizing learning curves and increasing adoption.
- Time interactions wisely: Trigger chatbot messages at appropriate moments based on user behavior, like offering help during confusion rather than interrupting important actions.
-
-
AI products like Cursor, Bolt and Replit are shattering growth records not because they're "AI agents". Or because they've got impossibly small teams (although that's cool to see 👀). It's because they've mastered the user experience around AI, somehow balancing pro-like capabilities with B2C-like UI. This is product-led growth on steroids. Yaakov Carno tried the most viral AI products he could get his hands on. Here are the surprising patterns he found: (Don't miss the full breakdown in today's bonus Growth Unhinged: https://lnkd.in/ehk3rUTa) 1. Their AI doesn't feel like a black box. Pro-tips from the best: - Show step-by-step visibility into AI processes - Let users ask, “Why did AI do that?” - Use visual explanations to build trust. 2. Users don’t need better AI—they need better ways to talk to it. Pro-tips from the best: - Offer pre-built prompt templates to guide users. - Provide multiple interaction modes (guided, manual, hybrid). - Let AI suggest better inputs ("enhance prompt") before executing an action. 3. The AI works with you, not just for you. Pro-tips from the best: - Design AI tools to be interactive, not just output-driven. - Provide different modes for different types of collaboration. - Let users refine and iterate on AI results easily. 4. Let users see (& edit) the outcome before it's irreversible. Pro-tips from the best: - Allow users to test AI features before full commitment (many let you use it without even creating an account). - Provide preview or undo options before executing AI changes. - Offer exploratory onboarding experiences to build trust. 5. The AI weaves into your workflow, it doesn't interrupt it. Pro-tips from the best: - Provide simple accept/reject mechanisms for AI suggestions. - Design seamless transitions between AI interactions. - Prioritize the user’s context to avoid workflow disruptions. -- The TL;DR: Having "AI" isn’t the differentiator anymore—great UX is. Pardon the Sunday interruption & hope you enjoyed this post as much as I did 🙏 #ai #genai #ux #plg
-
I’ve had the chance to work across several #EnterpriseAI initiatives esp. those with human computer interfaces. Common failures can be attributed broadly to bad design/experience, disjointed workflows, not getting to quality answers quickly, and slow response time. All exacerbated by high compute costs because of an under-engineered backend. Here are 10 principles that I’ve come to appreciate in designing #AI applications. What are your core principles? 1. DON’T UNDERESTIMATE THE VALUE OF GOOD #UX AND INTUITIVE WORKFLOWS Design AI to fit how people already work. Don’t make users learn new patterns — embed AI in current business processes and gradually evolve the patterns as the workforce matures. This also builds institutional trust and lowers resistance to adoption. 2. START WITH EMBEDDING AI FEATURES IN EXISTING SYSTEMS/TOOLS Integrate directly into existing operational systems (CRM, EMR, ERP, etc.) and applications. This minimizes friction, speeds up time-to-value, and reduces training overhead. Avoid standalone apps that add context-switching or friction. Using AI should feel seamless and habit-forming. For example, surface AI-suggested next steps directly in Salesforce or Epic. Where possible push AI results into existing collaboration tools like Teams. 3. CONVERGE TO ACCEPTABLE RESPONSES FAST Most users have gotten used to publicly available AI like #ChatGPT where they can get to an acceptable answer quickly. Enterprise users expect parity or better — anything slower feels broken. Obsess over model quality, fine-tune system prompts for the specific use case, function, and organization. 4. THINK ENTIRE WORK INSTEAD OF USE CASES Don’t solve just a task - solve the entire function. For example, instead of resume screening, redesign the full talent acquisition journey with AI. 5. ENRICH CONTEXT AND DATA Use external signals in addition to enterprise data to create better context for the response. For example: append LinkedIn information for a candidate when presenting insights to the recruiter. 6. CREATE SECURITY CONFIDENCE Design for enterprise-grade data governance and security from the start. This means avoiding rogue AI applications and collaborating with IT. For example, offer centrally governed access to #LLMs through approved enterprise tools instead of letting teams go rogue with public endpoints. 7. IGNORE COSTS AT YOUR OWN PERIL Design for compute costs esp. if app has to scale. Start small but defend for future-cost. 8. INCLUDE EVALS Define what “good” looks like and run evals continuously so you can compare against different models and course-correct quickly. 9. DEFINE AND TRACK SUCCESS METRICS RIGOROUSLY Set and measure quantifiable indicators: hours saved, people not hired, process cycles reduced, adoption levels. 10. MARKET INTERNALLY Keep promoting the success and adoption of the application internally. Sometimes driving enterprise adoption requires FOMO. #DigitalTransformation #GenerativeAI #AIatScale #AIUX