Data privacy and ethics must be a part of data strategies to set up for AI. Alignment and transparency are the most effective solutions. Both must be part of product design from day 1. Myths: Customers won’t share data if we’re transparent about how we gather it, and aligning with customer intent means less revenue. Instacart customers search for milk and see an ad for milk. Ads are more effective when they are closer to a customer’s intent to buy. Instacart charges more, so the app isn’t flooded with ads. SAP added a data gathering opt-in clause to its contracts. Over 25,000 customers opted in. The anonymized data trained models that improved the platform’s features. Customers benefit, and SAP attracts new customers with AI-supported features. I’ve seen the benefits first-hand working on data and AI products. I use a recruiting app project as an example in my courses. We gathered data about the resumes recruiters selected for phone interviews and those they rejected. Rerunning the matching after 5 select/reject examples made immediate improvements to the candidate ranking results. They asked for more transparency into the terms used for matching, and we showed them everything. We introduced the ability to reject terms or add their own. The 2nd pass matches improved dramatically. We got training data to make the models better out of the box, and they were able to find high-quality candidates faster. Alignment and transparency are core tenets of data strategy and are the foundations of an ethical AI strategy. #DataStrategy #AIStrategy #DataScience #Ethics #DataEngineering
Building Trust With Transparent Data Practices
Explore top LinkedIn content from expert professionals.
Summary
Building trust with transparent data practices means openly communicating how user data is collected, used, and protected, ensuring customers feel secure and respected while engaging with your brand or AI systems.
- Communicate clearly: Be upfront about how you use customer data and the benefits it provides them, turning transparency into a trust-building opportunity.
- Offer user control: Implement tools that allow customers to manage their data preferences and consent, empowering them to make informed choices.
- Showcase value: Highlight the advantages of data usage, such as improved personalization or enhanced services, to demonstrate how it serves the customer’s interests.
-
-
Why would your users distrust flawless systems? Recent data shows 40% of leaders identify explainability as a major GenAI adoption risk, yet only 17% are actually addressing it. This gap determines whether humans accept or override AI-driven insights. As founders building AI-powered solutions, we face a counterintuitive truth: technically superior models often deliver worse business outcomes because skeptical users simply ignore them. The most successful implementations reveal that interpretability isn't about exposing mathematical gradients—it's about delivering stakeholder-specific narratives that build confidence. Three practical strategies separate winning AI products from those gathering dust: 1️⃣ Progressive disclosure layers Different stakeholders need different explanations. Your dashboard should let users drill from plain-language assessments to increasingly technical evidence. 2️⃣ Simulatability tests Can your users predict what your system will do next in familiar scenarios? When users can anticipate AI behavior with >80% accuracy, trust metrics improve dramatically. Run regular "prediction exercises" with early users to identify where your system's logic feels alien. 3️⃣ Auditable memory systems Every autonomous step should log its chain-of-thought in domain language. These records serve multiple purposes: incident investigation, training data, and regulatory compliance. They become invaluable when problems occur, providing immediate visibility into decision paths. For early-stage companies, these trust-building mechanisms are more than luxuries. They accelerate adoption. When selling to enterprises or regulated industries, they're table stakes. The fastest-growing AI companies don't just build better algorithms - they build better trust interfaces. While resources may be constrained, embedding these principles early costs far less than retrofitting them after hitting an adoption ceiling. Small teams can implement "minimum viable trust" versions of these strategies with focused effort. Building AI products is fundamentally about creating trust interfaces, not just algorithmic performance. #startups #founders #growth #ai
-
A hairdresser and a marketer came into the bar. Hold on… Haircuts and marketing? 🤔 Here's the reality: Consumers are more aware than ever of how their data is used. User privacy is no longer a checkbox – It is a trust-building cornerstone for any online business. 88% of consumers say they won’t share personal information unless they trust a brand. Think about it: Every time a user visits your website, they’re making an active choice to trust you or not. They want to feel heard and respected. If you're not prioritizing their privacy preferences, you're risking their data AND loyalty. We’ve all been there – Asked for a quick trim and got VERY short hair instead. Using consumers’ data without consent is just like cutting the hair you shouldn’t cut. That horrible bad haircut ruined our mood for weeks. And a poor data privacy experience can drive customers straight to your competitors, leaving your shopping carts empty. How do you avoid this pitfall? - Listen to your users. Use consent and preference management tools such as Usercentrics to allow customers full control of their data. - Be transparent. Clearly communicate how you use their information and respect their choices. - Build trust: When users feel secure about their data, they’re more likely to engage with your brand. Make sure your website isn’t alienating users with poor data practices. Start by evaluating your current approach to data privacy by scanning your website for trackers. Remember, respecting consumer choices isn’t just an ethical practice. It’s essential for long-term success in e-commerce. Focus on creating a digital environment where consumers feel valued and secure. Trust me, it will pay off! 💰
-
The Personalization-Privacy Paradox: AI in customer experience is most effective when it personalizes interactions based on vast amounts of data. It anticipates needs, tailors recommendations, and enhances satisfaction by learning individual preferences. The more data it has, the better it gets. But here’s the paradox: the same customers who crave personalized experiences can also be deeply concerned about their privacy. AI thrives on data, but customers resist sharing it. We want hyper-relevant interactions without feeling surveilled. As AI improves, this tension only increases. AI systems can offer deep personalization while simultaneously eroding the very trust needed for customers to willingly share their data. This paradox is particularly problematic because both extremes seem necessary: AI needs data for personalization, but excessive data collection can backfire, leading to customer distrust, dissatisfaction, or even churn. So how do we fix it? Be transparent. Tell people exactly what you’re using their data for—and why it benefits them. Let the customer choose. Give control over what’s personalized (and what’s not). Show the value. Make personalization a perk, not a tradeoff. Personalization shouldn’t feel like surveillance. It should feel like service. You can make this invisible too. Give the customer “nudges” to move them down the happy path through experience orchestration. Trust is the real unlock. Everything else is just prediction. #cx #ai #privacy #trust #personalization