How Data Centers can Reduce Water Usage

Explore top LinkedIn content from expert professionals.

Summary

Reducing water usage in data centers involves exploring advanced cooling technologies and sustainable practices to address the growing environmental impact of these facilities.

  • Adopt closed-loop systems: Use cooling methods like liquid cooling with engineered coolants that recirculate without consuming additional water.
  • Embrace immersion cooling: Submerge hardware in non-conductive liquids to manage heat efficiently while minimizing water and energy needs.
  • Explore innovative locations: Consider new solutions like underwater data centers to utilize natural cooling methods and reduce water dependency.
Summarized by AI based on LinkedIn member posts
  • View profile for Rich Miller

    Authority on Data Centers, AI and Cloud

    44,322 followers

    AWS Builds Custom Liquid Cooling System for Data Centers Amazon Web Services (AWS) is sharing details of a new liquid cooling system to support high-density AI infrastructure in its data centers, including custom designs for a coolant distribution unit and an engineered fluid. “We've crossed a threshold where it becomes more economical to use liquid cooling to extract the heat,” said Dave Klusas, AWS’s senior manager of data center cooling systems, in a blog post. The AWS team considered multiple vendor liquid cooling solutions, but found none met its needs and began designing a completely custom system, which was delivered in 11 months, the company said. The direct-to-chip solution uses a cold plate placed directly on top of the chip. The coolant, a fluid specifically engineered by AWS, runs in tubes through the sealed cold plate, absorbing the heat and carrying it out of the server rack to a heat rejection system, and then back to the cold plates. It’s a closed loop system, meaning the liquid continuously recirculates without increasing the data center’s water consumption. AWS also developed a custom coolant distribution unit, which it said is more powerful and more efficient than its off-the-shelf competitors. “We invented that specifically for our needs,” Klusas says. “By focusing specifically on our problem, we were able to optimize for lower cost, greater efficiency, and higher capacity.” Klusas said the liquid is typically at “hot tub” temperatures for improved efficiency. AWS has shared details of its process, including photos: https://lnkd.in/e-D4HvcK

  • View profile for Amy Luers, PhD

    Head of Sustainability Science & Innovation @Microsoft | former Obama White House (OSTP) | X-Googler | Board Advisor

    10,991 followers

    𝗡𝗲𝘄 𝗿𝗲𝘀𝗲𝗮𝗿𝗰𝗵 𝗵𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝘀 𝗵𝗼𝘄 𝗱𝗮𝘁𝗮 𝗰𝗲𝗻𝘁𝗲𝗿𝘀 𝗰𝗮𝗻 𝗹𝗼𝘄𝗲𝗿 𝘁𝗵𝗲𝗶𝗿 𝗰𝗮𝗿𝗯𝗼𝗻, 𝗲𝗻𝗲𝗿𝗴𝘆, 𝗮𝗻𝗱 𝘄𝗮𝘁𝗲𝗿 𝗳𝗼𝗼𝘁𝗽𝗿𝗶𝗻𝘁𝘀 — 𝗳𝗿𝗼𝗺 𝗰𝗿𝗮𝗱𝗹𝗲 𝘁𝗼 𝗴𝗿𝗮𝘃𝗲. A new paper Nature Magazine from Microsoft researchers, (led by Husam Alissa and Teresa Nick), demonstrates the power of life cycle assessment (#LCA) to guide more sustainable data center design decisions — going beyond operational efficiency. 𝐊𝐞𝐲 𝐌𝐞𝐬𝐬𝐚𝐠𝐞:  While LCAs are often conducted after design and construction, this paper highlights the value of applying them much earlier. Integrated into early-stage design, LCAs help balance sustainability alongside feasibility and cost — leading to better trade-offs from the start. For example, the study found that switching from air cooling to cold plates that cool datacenter chips more directly – a newer technology that Microsoft is deploying in its datacenters – could: ▶️reduce GHG emissions and energy demand by ~15 % and ▶️reduce water consumption by ~30-50 % across the datacenters’ entire life spans. And this goes beyond cooling water. It includes water used in power generation, manufacturing, and across the entire value chain. As lead author Husam Alissa notes: "𝘞𝘦’𝘳𝘦 𝘢𝘥𝘷𝘰𝘤𝘢𝘵𝘪𝘯𝘨 𝘧𝘰𝘳 𝘭𝘪𝘧𝘦 𝘤𝘺𝘤𝘭𝘦 𝘢𝘴𝘴𝘦𝘴𝘴𝘮𝘦𝘯𝘵 𝘵𝘰𝘰𝘭𝘴 𝘵𝘰 𝘨𝘶𝘪𝘥𝘦 𝘦𝘯𝘨𝘪𝘯𝘦𝘦𝘳𝘪𝘯𝘨 𝘥𝘦𝘤𝘪𝘴𝘪𝘰𝘯𝘴 𝘦𝘢𝘳𝘭𝘺 𝘰𝘯 — 𝘢𝘯𝘥 𝘴𝘩𝘢𝘳𝘪𝘯𝘨 𝘵𝘩𝘦𝘮 𝘸𝘪𝘥𝘦𝘭𝘺 𝘵𝘰 𝘮𝘢𝘬𝘦 𝘢𝘥𝘰𝘱𝘵𝘪𝘰𝘯 𝘦𝘢𝘴𝘪𝘦𝘳." To support broader adoption, the team is making the methodology open and available to the industry via an open research repository: https://lnkd.in/gC5jdkMs The work builds on Microsoft’s continued efforts to construct unified life cycle assessment methods and tools for cloud providers. (read more about this here: https://lnkd.in/gq24wMrA) 𝐑𝐞𝐚𝐝 𝘁𝗵𝗲 𝗳𝘂𝗹𝗹 𝗽𝗮𝗽𝗲𝗿 𝗵𝗲𝗿𝗲: 👉https://lnkd.in/gVm25zzh #sustainability #climateaction #innovation #sciencetoaction

  • View profile for Keith King

    Former White House Lead Communications Engineer, U.S. Dept of State, and Joint Chiefs of Staff in the Pentagon. Veteran U.S. Navy, Top Secret/SCI Security Clearance. Over 12,000+ direct connections & 33,000+ followers.

    33,837 followers

    Headline: China Sinks Data Centers into the Ocean to Tackle AI Cooling Crisis ⸻ Introduction: To support its aggressive push into artificial intelligence and cloud computing, China is rapidly expanding its data center infrastructure. But this expansion poses a growing challenge: how to cool vast server farms without depleting precious water supplies. In a bold and innovative move, China is deploying data centers underwater, turning to the ocean as a sustainable cooling solution—and in doing so, it may be outpacing the rest of the world. ⸻ Key Details: 1. AI Demands Fuel Data Center Growth • China’s economic strategy prioritizes AI, digital infrastructure, and cloud computing as critical engines of future growth. • These technologies depend on high-performance data centers, which consume massive energy and water resources for cooling. 2. Water Scarcity vs. Data Center Demand • Traditional land-based data centers use hundreds of thousands of gallons of water per day to dissipate heat. • Many are located in arid regions like Arizona, Spain, and parts of the Middle East due to their low humidity, despite water scarcity in these areas. • As these centers proliferate, they compete directly with agriculture and human consumption, prompting sustainability concerns. 3. China’s Ocean-Based Solution • In response to the growing water challenge, China is leading the deployment of underwater data centers, placing them offshore to utilize natural ocean cooling. • This method drastically reduces water usage and energy costs while avoiding the land-use conflicts associated with traditional facilities. • China’s efforts appear to be ahead of other nations, which have only experimented with submerged servers on a limited scale. 4. Environmental and Strategic Implications • Underwater data centers may reduce carbon footprints and eliminate the need for massive evaporative cooling systems. • However, there are questions about long-term maintenance, ecological impact, and geopolitical access to maritime infrastructure. • The shift could reinforce China’s position in the global AI arms race by improving data center efficiency and reducing operational constraints. ⸻ Why It Matters: As AI continues to drive demand for computing power, the environmental costs of data centers—especially water usage—are becoming unsustainable. China’s underwater strategy not only offers a bold path to sustainability but also serves as a geopolitical differentiator in the digital era. If successful at scale, ocean-based data centers could reshape the future of computing infrastructure worldwide, offering a cleaner, cooler alternative to traditional server farms on land. https://lnkd.in/gEmHdXZy

  • View profile for Julio Pinet

    AI Consultant, Strategy & Leadership Expert, Certified Scrum Master | Founder & CEO | Helping Organizations Accelerate Growth & Adapt to Change

    1,878 followers

    🌡️ Revolutionizing Data Center Cooling: The Power of Fluorinated Liquids!** 🌊✨ Discover how cutting-edge immersion cooling technology is transforming the way we manage heat in high-performance computing. With fluorinated liquids leading the charge, we’re not just enhancing efficiency—we’re paving the way for a sustainable future in tech! 🔧💚 Immersion cooling is an advanced cooling technique used primarily in data centers and high-performance computing environments. This method involves submerging electronic components, such as servers and other hardware, directly into a dielectric (non-conductive) liquid coolant. How Immersion Cooling Works The process of immersion cooling can be broken down into three main steps: 1. Submersion: Hardware components are fully submerged in a dielectric coolant, which is designed to avoid electrical interference. Fans and power supplies must be removed before submersion. 2. Heat Absorption: The liquid coolant, which has a higher thermal conductivity than air, absorbs the heat generated by the electronic components. 3. Heat Dissipation: The heated liquid is circulated to a heat exchanger where the heat is transferred away from the coolant, allowing it to be recirculated back to the hardware. Types of Immersion Cooling There are two main approaches to immersion cooling: 1. Single-Phase Immersion Cooling:    - The coolant remains in liquid form throughout the process.   - The liquid is pumped to a heat exchanger where heat is transferred to a cool water circuit.   - Cooling baths are typically open-topped due to low evaporation risk. 2. Two-Phase Immersion Cooling:   - Uses a dielectric fluid with a low boiling point (around 56°C).   - The heat causes the liquid to boil and change to gas.   - The gas rises, meets a condenser, and 'rains' back into the pool, cooling the working fluid again.   - Requires sealed baths to prevent gas escape. Benefits of Immersion Cooling Immersion cooling offers several advantages over traditional air cooling methods: - Energy Efficiency: Can reduce Power Usage Effectiveness (PUE) to below 1.1, compared to the global average of 1.55. - Space Saving: Allows for higher computing density in a smaller space. - Noise Reduction: Eliminates the need for fans, resulting in quieter operation. - Hardware Longevity: Maintains consistent temperatures, reducing thermal stress on components. - Sustainability: Can reduce carbon emissions by up to 39% and water consumption by up to 91%. Coolants Used The dielectric fluids used in immersion cooling fall into two categories: 1. Oils (synthetic, mineral, bio) 2. Engineered fluids (e.g., 3M's Novec or Fluorinert lines) Immersion cooling represents a significant advancement in data center cooling technology, offering improved efficiency, sustainability, and performance compared to traditional air cooling methods. What do you think? #DataCenter #CoolingTechnology #Sustainability #Innovation #3M #Novec #ai Video courtesy of MechMarvelTV

Explore categories