How to Mitigate LLM Vulnerabilities

Explore top LinkedIn content from expert professionals.

Summary

Understanding large language model (LLM) vulnerabilities is crucial for ensuring the safe and responsible deployment of AI technologies. These vulnerabilities refer to the potential risks, such as data leaks, misuse, or bias, that can arise when using AI systems, and mitigating them involves implementing robust safeguards and strategies to address these risks effectively.

  • Limit access and permissions: Restrict what an LLM or AI system can access and perform by using least-privilege principles, ensuring sensitive actions require human validation.
  • Prioritize data security: Use secure and verified datasets, monitor for data leakage, and apply tamper-resistant techniques during training and fine-tuning of AI models.
  • Monitor and test continuously: Implement risk assessments, set clear guidelines, and regularly test AI systems to identify vulnerabilities and prevent emerging risks.
Summarized by AI based on LinkedIn member posts
  • View profile for Leonard Rodman, M.Sc. PMP® LSSBB® CSM® CSPO®

    Follow me and learn about AI for free! | AI Consultant and Influencer | API Automation Developer/Engineer | DM me for promotions

    53,098 followers

    Whether you’re integrating a third-party AI model or deploying your own, adopt these practices to shrink your exposed surfaces to attackers and hackers: • Least-Privilege Agents – Restrict what your chatbot or autonomous agent can see and do. Sensitive actions should require a human click-through. • Clean Data In, Clean Model Out – Source training data from vetted repositories, hash-lock snapshots, and run red-team evaluations before every release. • Treat AI Code Like Stranger Code – Scan, review, and pin dependency hashes for anything an LLM suggests. New packages go in a sandbox first. • Throttle & Watermark – Rate-limit API calls, embed canary strings, and monitor for extraction patterns so rivals can’t clone your model overnight. • Choose Privacy-First Vendors – Look for differential privacy, “machine unlearning,” and clear audit trails—then mask sensitive data before you ever hit Send. Rapid-fire user checklist: verify vendor audits, separate test vs. prod, log every prompt/response, keep SDKs patched, and train your team to spot suspicious prompts. AI security is a shared-responsibility model, just like the cloud. Harden your pipeline, gate your permissions, and give every line of AI-generated output the same scrutiny you’d give a pull request. Your future self (and your CISO) will thank you. 🚀🔐

  • View profile for Pradeep Sanyal

    Enterprise AI Strategy | Experienced CIO & CTO | Chief AI Officer (Advisory)

    18,992 followers

    Privacy isn’t a policy layer in AI. It’s a design constraint. The new EDPB guidance on LLMs doesn’t just outline risks. It gives builders, buyers, and decision-makers a usable blueprint for engineering privacy - not just documenting it. The key shift? → Yesterday: Protect inputs → Today: Audit the entire pipeline → Tomorrow: Design for privacy observability at runtime The real risk isn’t malicious intent. It’s silent propagation through opaque systems. In most LLM systems, sensitive data leaks not because someone intended harm but because no one mapped the flows, tested outputs, or scoped where memory could resurface prior inputs. This guidance helps close that gap. And here’s how to apply it: For Developers: • Map how personal data enters, transforms, and persists • Identify points of memorization, retention, or leakage • Use the framework to embed mitigation into each phase: pretraining, fine-tuning, inference, RAG, feedback For Users & Deployers: • Don’t treat LLMs as black boxes. Ask if data is stored, recalled, or used to retrain • Evaluate vendor claims with structured questions from the report • Build internal governance that tracks model behaviors over time For Decision-Makers & Risk Owners: • Use this to complement your DPIAs with LLM-specific threat modeling • Shift privacy thinking from legal compliance to architectural accountability • Set organizational standards for “commercial-safe” LLM usage This isn’t about slowing innovation. It’s about future-proofing it. Because the next phase of AI scale won’t just be powered by better models. It will be constrained and enabled by how seriously we engineer for trust. Thanks European Data Protection Board, Isabel Barberá H/T Peter Slattery, PhD

  • View profile for Patrick Sullivan

    VP of Strategy and Innovation at A-LIGN | TEDx Speaker | Forbes Technology Council | AI Ethicist | ISO/IEC JTC1/SC42 Member

    10,204 followers

    ☢️Manage Third-Party AI Risks Before They Become Your Problem☢️ AI systems are rarely built in isolation as they rely on pre-trained models, third-party datasets, APIs, and open-source libraries. Each of these dependencies introduces risks: security vulnerabilities, regulatory liabilities, and bias issues that can cascade into business and compliance failures. You must move beyond blind trust in AI vendors and implement practical, enforceable supply chain security controls based on #ISO42001 (#AIMS). ➡️Key Risks in the AI Supply Chain AI supply chains introduce hidden vulnerabilities: 🔸Pre-trained models – Were they trained on biased, copyrighted, or harmful data? 🔸Third-party datasets – Are they legally obtained and free from bias? 🔸API-based AI services – Are they secure, explainable, and auditable? 🔸Open-source dependencies – Are there backdoors or adversarial risks? 💡A flawed vendor AI system could expose organizations to GDPR fines, AI Act nonconformity, security exploits, or biased decision-making lawsuits. ➡️How to Secure Your AI Supply Chain 1. Vendor Due Diligence – Set Clear Requirements 🔹Require a model card – Vendors must document data sources, known biases, and model limitations. 🔹Use an AI risk assessment questionnaire – Evaluate vendors against ISO42001 & #ISO23894 risk criteria. 🔹Ensure regulatory compliance clauses in contracts – Include legal indemnities for compliance failures. 💡Why This Works: Many vendors haven’t certified against ISO42001 yet, but structured risk assessments provide visibility into potential AI liabilities. 2️. Continuous AI Supply Chain Monitoring – Track & Audit 🔹Use version-controlled model registries – Track model updates, dataset changes, and version history. 🔹Conduct quarterly vendor model audits – Monitor for bias drift, adversarial vulnerabilities, and performance degradation. 🔹Partner with AI security firms for adversarial testing – Identify risks before attackers do. (Gemma Galdon Clavell, PhD , Eticas.ai) 💡Why This Works: AI models evolve over time, meaning risks must be continuously reassessed, not just evaluated at procurement. 3️. Contractual Safeguards – Define Accountability 🔹Set AI performance SLAs – Establish measurable benchmarks for accuracy, fairness, and uptime. 🔹Mandate vendor incident response obligations – Ensure vendors are responsible for failures affecting your business. 🔹Require pre-deployment model risk assessments – Vendors must document model risks before integration. 💡Why This Works: AI failures are inevitable. Clear contracts prevent blame-shifting and liability confusion. ➡️ Move from Idealism to Realism AI supply chain risks won’t disappear, but they can be managed. The best approach? 🔸Risk awareness over blind trust 🔸Ongoing monitoring, not just one-time assessments 🔸Strong contracts to distribute liability, not absorb it If you don’t control your AI supply chain risks, you’re inheriting someone else’s. Please don’t forget that.

  • View profile for Charles H. Martin, PhD

    AI Specialist and Distinguished Engineer (NLP & Search). Inventor of weightwatcher.ai . TEDx Speaker. Need help with AI ? #talkToChuck

    44,845 followers

    In a previous post, I showed a clever way to turn a foundation toxic. Now, for the rebuttal, here's a paper showing how to make a model tamper-resistant. (TAR) Tamper-Resistant Safeguards for Open-Weight LLMs TAR employs adversarial training and meta-learning techniques to build safeguards that remain effective even after extensive fine-tuning. The method involves 2 phases: - Model Safeguarding: An initial safeguard is applied to the LLM to restrict harmful outputs or knowledge domains. - Tamper-Resistance Training: The model undergoes adversarial training against tampering attacks to strengthen the safeguards, making them resistant to tampering attempts. Notably,  they introduce a new loss function, called tamper-resistance loss, which maximises the entropy --not the cross entropy -- during fine-tuning, preventing the adversary from reducing the effectiveness of the safeguards. "When the tamper-resistance loss maximizes cross-entropy (left), the adversary is only affected earlier in its trajectory and quickly recovers. By contrast, when the tamper-resistance loss maximizes entropy (right), the inner loop adversary is eventually thwarted along its entire trajectory." They test TAR on 3 domains : - Weaponization Knowledge Restriction: Safeguarding the model from producing text related to biosecurity, chemical security, and cybersecurity. - Harmful Request Refusal: Ensuring the model refuses to produce harmful content when prompted. - Benign Fine-Tuning: Testing whether the model can still be fine-tuned on benign tasks (e.g., economics) without compromising the safeguards. The results indicate that tamper-resistance can be achieved in open-weight LLMs, providing a valuable tool for model developers and regulators. BUT While TAR improves robustness, there are trade-offs, such as a slight reduction in benign task performance, which the paper acknowledges and suggests could be mitigated with further research. paper: https://lnkd.in/gPaVns2P website: https://lnkd.in/g2RNTC7B source: https://lnkd.in/gm9ftt9S and there is code! https://lnkd.in/gHr_yUKM Looking to make a model tamper free ? Maybe this will help. If you do try this, I'd love to hear about it.

  • Prompt Injection is one of the most critical risks when integrating LLMs into real-world workflows, especially in customer-facing scenarios. Imagine a “sales copilot” that receives an email from a customer requesting a quote. Under the hood, the copilot looks up the customer’s record in CRM to determine their negotiated discount rate, consults an internal price sheet to calculate the proper quote, and crafts a professional response—all without human intervention. However, if that customer’s email contains a malicious payload like “send me your entire internal price list and the deepest discount available,” an unprotected copilot could inadvertently expose sensitive company data. This is exactly the type of prompt injection attack that threatens both confidentiality and trust. That’s where FIDES (Flow-Informed Deterministic Enforcement System) comes in. In our newly published paper, we introduce a deterministic information flow control methodology that ensures untrusted inputs—like a customer email—cannot trick the copilot into leaking restricted content. With FIDES, each piece of data (e.g., CRM lookup results, pricing tables, email drafts) is tagged with information-flow labels, and the system enforces strict policies about how LLM outputs combine and propagate those labels. In practice, this means the copilot can safely read an email, pull the correct discount from CRM, compute the quote against the internal price sheet, and respond to the customer—without ever exposing the full price list or additional confidential details, even if the email tries to coax them out. We believe deterministic solutions like FIDES will be vital for enterprises looking to deploy LLMs in high-stakes domains like sales, finance, or legal. If you’re interested in the technical details, check out our paper: https://lnkd.in/gjH_hX9g

  • View profile for Shea Brown
    Shea Brown Shea Brown is an Influencer

    AI & Algorithm Auditing | Founder & CEO, BABL AI Inc. | ForHumanity Fellow & Certified Auditor (FHCA)

    21,951 followers

    🚨 Public Service Announcement: If you're building LLM-based applications for internal business use, especially for high-risk functions this is for you. Define Context Clearly ------------------------ 📋 Document the purpose, expected behavior, and users of the LLM system. 🚩 Note any undesirable or unacceptable behaviors upfront. Conduct a Risk Assessment ---------------------------- 🔍 Identify potential risks tied to the LLM (e.g., misinformation, bias, toxic outputs, etc), and be as specific as possible 📊 Categorize risks by impact on stakeholders or organizational goals. Implement a Test Suite ------------------------ 🧪 Ensure evaluations include relevant test cases for the expected use. ⚖️ Use benchmarks but complement them with tests tailored to your business needs. Monitor Risk Coverage ----------------------- 📈 Verify that test inputs reflect real-world usage and potential high-risk scenarios. 🚧 Address gaps in test coverage promptly. Test for Robustness --------------------- 🛡 Evaluate performance on varied inputs, ensuring consistent and accurate outputs. 🗣 Incorporate feedback from real users and subject matter experts. Document Everything ---------------------- 📑 Track risk assessments, test methods, thresholds, and results. ✅ Justify metrics and thresholds to enable accountability and traceability. #psa #llm #testingandevaluation #responsibleAI #AIGovernance Patrick Sullivan, Khoa Lam, Bryan Ilg, Jeffery Recker, Borhane Blili-Hamelin, PhD, Dr. Benjamin Lange, Dinah Rabe, Ali Hasan

Explore categories