Integrating Supply Chain Analytics into Daily Operations

Explore top LinkedIn content from expert professionals.

Summary

Integrating supply chain analytics into daily operations means using data-driven tools and strategies to make informed decisions that improve efficiency, reduce risks, and adapt to changing market conditions in the supply chain process. It’s about aligning analytics with day-to-day decision-making to build a more resilient and adaptive system.

  • Build data-driven frameworks: Develop structured decision-making systems that utilize analytics to guide everyday supply chain choices and reduce reliance on intuition.
  • Focus on adaptability: Use tools like scenario modeling or sequential decision-making to prepare for unexpected changes, such as demand surges or tariff adjustments.
  • Strengthen data integration: Implement real-time dashboards and connected databases to gain a clearer, dynamic view of your supply chain for better decision-making and risk mitigation.
Summarized by AI based on LinkedIn member posts
  • View profile for Willem Koenders

    Global Leader in Data Strategy

    15,966 followers

    Last week, I posted about data strategies’ tendency to focus on the data itself, overlooking the (data-driven) decisioning process itself. All it not lost. First, it is appropriate that the majority of the focus remains on the supply of high-quality #data relative to the perceived demand for it through the lenses of specific use cases. But there is an opportunity to complement this by addressing the decisioning process itself. 7 initiatives you can consider: 1) Create a structured decision-making framework that integrates data into the strategic decision-making process. This is a reusable framework that can be used to explain in a variety of scenarios how decisions can be made. Intuition is not immediately a bad thing, but the framework raises awareness about its limitations, and the role of data to overcome them. 2) Equip leaders with the skills to interpret and use data effectively in strategic contexts. This can include offering training programs focusing on data literacy, decision-making biases, hypothesis development, and data #analytics techniques tailored for strategic planning. A light version could be an on-demand training. 3) Improve your #MI systems and dashboards to provide real-time, relevant, and easily interpretable data for strategic decision-makers. If data is to play a supporting role to intuition in a number of important scenarios, then at least that data should be available and reliable. 4) Encourage a #dataculture, including in the top executive tier. This is the most important and all-encompassing recommendation, but at the same time the least tactical and tangible. Promote the use of data in strategic discussions, celebrate data-driven successes, and create forums for sharing best practices. 5) Integrate #datascientists within strategic planning teams. Explore options to assign them to work directly with executives on strategic initiatives, providing data analysis, modeling, and interpretation services as part of the decision-making process. 6) Make decisioning a formal pillar of your #datastrategy alongside common existing ones like data architecture, data quality, and metadata management. Develop initiatives and goals focused on improving decision-making processes, including training, tools, and metrics. 7) Conduct strategic data reviews to evaluate how effectively data was used. Avoid being overly critical of the decision-makers; the goal is to refine the process, not question the decisions themselves. Consider what data could have been sought at the time to validate or challenge the decision. Both data and intuition have roles to play in strategic decision-making. No leap in data or #AI will change that. The goal is to balance the two, which requires investment in the decision-making process to complement the existing focus on the data itself. Full POV ➡️ https://lnkd.in/e3F-R6V7

  • Tariff volatility is here. Can you adapt fast enough? Entering 2025 we are facing a radically altered trade landscape. Tariff proposals range from 10% to 60%.  🚢 Organizations must manage rising costs, sudden supply disruptions, and inflationary pressures, all while contending with fast-changing rules and potential retaliation from trading partners. Yet volatility also creates opportunities for organizations who are prepared. 🧭 𝗚𝗿𝗮𝗽𝗵-𝗯𝗮𝘀𝗲𝗱 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲𝘀 𝗮𝗻𝗱 𝗮𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗰𝗮𝗻 𝗽𝗿𝗼𝘃𝗶𝗱𝗲 𝗿𝗲𝗮𝗹-𝘁𝗶𝗺𝗲 𝗶𝗻𝘀𝗶𝗴𝗵𝘁𝘀 𝗶𝗻𝘁𝗼 𝘆𝗼𝘂𝗿 𝗶𝗻𝘁𝗲𝗿𝗰𝗼𝗻𝗻𝗲𝗰𝘁𝗲𝗱 𝘄𝗲𝗯 𝗼𝗳 𝘀𝘂𝗽𝗽𝗹𝗶𝗲𝗿𝘀, 𝘁𝗮𝗿𝗶𝗳𝗳𝘀, 𝗮𝗻𝗱 𝗹𝗼𝗴𝗶𝘀𝘁𝗶𝗰𝗮𝗹 𝗿𝗼𝘂𝘁𝗲𝘀. Here's how: 1️⃣ 𝗠𝘂𝗹𝘁𝗶-𝗛𝗼𝗽 𝗦𝘂𝗽𝗽𝗹𝘆 𝗖𝗵𝗮𝗶𝗻 𝗩𝗶𝘀𝗶𝗯𝗶𝗹𝗶𝘁𝘆 ↳ Map your entire supplier network as nodes and relationships in a graph.  ↳ Visualize dependencies several layers deep, often hidden in traditional systems. 2️⃣ 𝗗𝘆𝗻𝗮𝗺𝗶𝗰 𝗧𝗮𝗿𝗶𝗳𝗳 𝗦𝗰𝗲𝗻𝗮𝗿𝗶𝗼 𝗠𝗼𝗱𝗲𝗹𝗶𝗻𝗴 ↳ Add tariffs to the graph and then use graph algorithms to simulate alternate sourcing paths with lower duties or better resilience. ↳ This enables decision-makers to test “what-if” scenarios, minimizing guesswork when a sudden tariff spike occurs. 3️⃣ 𝗣𝗿𝗲𝗱𝗶𝗰𝘁𝗶𝘃𝗲 𝗥𝗶𝘀𝗸 & 𝗗𝗲𝗽𝗲𝗻𝗱𝗲𝗻𝗰𝘆 𝗔𝗻𝗮𝗹𝘆𝘀𝗶𝘀 ↳  Apply centrality and community-detection algorithms to find which suppliers or markets could cause cascading failures. ↳  Uncover clusters of high-risk exposure, allowing proactive adjustments rather than reactive damage control. Graph-based platforms help executives move beyond spreadsheets and siloed databases. They offer a living, interconnected view of all the moving parts, enabling better-informed decisions on pricing, sourcing, and expansion. 🚀 𝗔𝘁 𝗗𝗮𝘁𝗮2 𝘄𝗲 𝗵𝗮𝘃𝗲 𝗯𝘂𝗶𝗹𝘁 𝗼𝘂𝗿 𝗿𝗲𝗩𝗶𝗲𝘄 𝗽𝗹𝗮𝘁𝗳𝗼𝗿𝗺 𝗼𝗻 𝘁𝗼𝗽 𝗼𝗳 𝗡𝗲𝗼4𝗷 𝘁𝗼 𝗵𝗲𝗹𝗽 𝗼𝗿𝗴𝗮𝗻𝗶𝘇𝗮𝘁𝗶𝗼𝗻𝘀 𝗮𝗰𝗰𝗲𝗹𝗲𝗿𝗮𝘁𝗲 𝘁𝗵𝗲𝗶𝗿 𝗮𝗱𝗼𝗽𝘁𝗶𝗼𝗻 𝗼𝗳 𝗴𝗿𝗮𝗽𝗵𝘀 𝗮𝗻𝗱 𝗿𝗲𝗹𝗶𝗮𝗯𝗹𝗲 𝗔𝗜 𝗳𝗼𝗿 𝗰𝗿𝗶𝘁𝗶𝗰𝗮𝗹 𝗮𝗽𝗽𝗹𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀. If your organization is concerned about how it can adapt to the new era of trade volatility, reach out and we can start the conversation. ♻️ Know someone who needs better visibility into their supply chain? Share this post to help them out! 🔔 Follow me Daniel Bukowski for daily insights about delivering value from connected data.

  • View profile for Adam DeJans Jr.

    Optimization @ Gurobi | Author of the MILP Handbook Series

    23,532 followers

    Ever struggle with unpredictable demand and supply constraints? 🤔 I believe Sequential Decision Analytics (SDA) can make a real difference. 📦 Scenario: You’re managing inventory for multiple products. Traditional methods rely on static plans based on fixed forecasts. But what happens when demand spikes unexpectedly or a supplier delays shipments? 🔍 SDA Approach: Instead of building one rigid plan, you create a sequence of decisions that adapt over time. 1️⃣ Capture the State: Gather everything you know—current inventory, pending orders, supplier reliability. 2️⃣ Decision Policy: Decide how much to reorder, whether to reallocate stock, or adjust lead times. This policy doesn’t just react to what’s happening now; it anticipates future changes. 3️⃣ Sequential Planning: Plan each step with the long-term goal in mind. Adjust your strategy as new data arrives, like shifts in demand or supply issues. It’s not about real-time reactions but about making informed, sequential choices. 🔄 Learning and Adaptation: Refine your policy as you learn. If a supplier is consistently late, factor that into future decisions, so your plan gets better with each iteration. 🎯 Objective: Optimize long-term profitability and service levels, not just by minimizing cost in a static model but by balancing risks like stockouts and overstock over time. With SDA, you're not just guessing or reacting; you’re building a resilient, adaptive strategy for your supply chain. What are your thoughts on this framework and approach? 🤔 #OperationsResearch #SupplyChain #InventoryOptimization #SequentialDecisionAnalytics

Explore categories