Climate data uncertainty reduction techniques

Explore top LinkedIn content from expert professionals.

Summary

Climate-data-uncertainty-reduction-techniques are methods used to make climate predictions more reliable and accurate by decreasing the uncertainty in climate data, which is crucial for planning and decision-making at local and global scales. These techniques range from advanced statistical approaches to innovative AI-based models that provide detailed, actionable forecasts for regions and cities.

  • Use smarter models: Try combining different climate models or using machine learning frameworks to get more precise and locally relevant weather and climate information.
  • Refine predictions: Incorporate models that account for natural variability and uncertainty, which gives decision-makers a clearer picture of possible future climate scenarios.
  • Assign model weights: Apply statistical methods to balance the influence of various models, ensuring no useful data is left out and extreme outcomes are better understood.
Summarized by AI based on LinkedIn member posts
  • View profile for Jozef Pecho

    Climate/NWP Model & Data Analyst at Floodar (Meratch), GOSPACE LABS | Predicting floods, protecting lives

    1,617 followers

    🌍 Climate scientists often face a trade-off: Global Climate Models (GCMs) are essential for long-term climate projections — but they operate at coarse spatial resolution, making them too crude for regional or local decision-making. To get fine-scale data, researchers use Regional Climate Models (RCMs). These add crucial spatial detail, but come at a very high computational cost, often requiring supercomputers to run for months. ➡️ A new paper introduces EnScale — a machine learning framework that offers an efficient and accurate alternative to running full RCM simulations. Instead of solving the complex physics from scratch, EnScale "learns" the relationship between GCMs and RCMs by training on existing paired datasets. It then generates high-resolution, realistic, and diverse regional climate fields directly from GCM inputs. What makes EnScale stand out? ✅ It uses a generative ML model trained with a statistically principled loss (energy score), enabling probabilistic outputs that reflect natural variability and uncertainty ✅ It is multivariate – it learns to generate temperature, precipitation, radiation, and wind jointly, preserving spatial and cross-variable coherence ✅ It is computationally lightweight – training and inference are up to 10–20× faster than state-of-the-art generative approaches ✅ It includes an extension (EnScale-t) for generating temporally consistent time series – a must for studying events like heatwaves or prolonged droughts This approach opens the door to faster, more flexible generation of regional climate scenarios, essential for risk assessment, infrastructure planning, and climate adaptation — especially where computational resources are limited. 📄 Read the full paper: EnScale: Temporally-consistent multivariate generative downscaling via proper scoring rules ---> https://lnkd.in/dQr5rmWU (code: https://lnkd.in/dQk_Jv8g) 👏 Congrats to the authors — a strong step forward for ML-based climate modeling! #climateAI #downscaling #generativeAI #machinelearning #climatescience #EnScale #RCM #GCM #ETHZurich #climatescenarios

  • Every year, natural disasters hit harder and closer to home. But when city leaders ask, "How will rising heat or wildfire smoke impact my home in 5 years?"—our answers are often vague. Traditional climate models give sweeping predictions, but they fall short at the local level. It's like trying to navigate rush hour using a globe instead of a street map. That’s where generative AI comes in. This year, our team at Google Research built a new genAI method to project climate impacts—taking predictions from the size of a small state to the size of a small city. Our approach provides: - Unprecedented detail – in regional environmental risk assessments at a small fraction of the cost of existing techniques - Higher accuracy – reduced fine-scale errors by over 40% for critical weather variables and reduces error in extreme heat and precipitation projections by over 20% and 10% respectively - Better estimates of complex risks – Demonstrates remarkable skill in capturing complex environmental risks due to regional phenomena, such as wildfire risk from Santa Ana winds, which statistical methods often miss Dynamical-generative downscaling process works in two steps: 1) Physics-based first pass: First, a regional climate model downscales global Earth system data to an intermediate resolution (e.g., 50 km) – much cheaper computationally than going straight to very high resolution. 2) AI adds the fine details: Our AI-based Regional Residual Diffusion-based Downscaling model (“R2D2”) adds realistic, fine-scale details to bring it up to the target high resolution (typically less than 10 km), based on its training on high-resolution weather data. Why does this matter? Governments and utilities need these hyperlocal forecasts to prepare emergency response, invest in infrastructure, and protect vulnerable neighborhoods. And this is just one way AI is turbocharging climate resilience. Our teams at Google are already using AI to forecast floods, detect wildfires in real time, and help the UN respond faster after disasters. The next chapter of climate action means giving every city the tools to see—and shape—their own future. Congratulations Ignacio Lopez Gomez, Tyler Russell MBA, PMP, and teams on this important work! Discover the full details of this breakthrough: https://lnkd.in/g5u_WctW  PNAS Paper: https://lnkd.in/gr7Acz25

  • View profile for Greg Cocks

    Spatial Data Scientist | Sharing (Mainly) GIS, Spatial & Geology Content | This account is not affiliated with my employer

    33,365 followers

    Scientists Combine Climate Models For More Accurate Projections -- https://lnkd.in/ga-82Kaw <-- shared technical article -- https://lnkd.in/gHFTDAYj <-- shared paper -- Researchers... have created a new method for statistically analyzing climate models that projects future conditions with more fidelity. The method provides a way to adjust for models with high temperature sensitivities—a known problem in the community. By assigning different weights to models and combining them, the researchers estimate that the global temperature will increase between 2 and 5° Celsius by the end of the century. This projection, published in Nature Communications Earth & Environment [link above], aligns with previous projections, although this novel framework is more inclusive, avoiding the rejection of models that was common practice in previous methods... A key parameter for these models—known as equilibrium climate sensitivity or ECS—describes the relationship between change in carbon dioxide and corresponding warming. Although the Earth system has a true ECS, it is not a measurable quantity. Different lines of evidence can provide a plausible picture of the Earth's true ECS, which can alleviate the uncertainty of simulation models. However, many models assume a high ECS and predict higher temperatures in response to more atmospheric carbon dioxide than occurs in the real Earth system. Because these models provide estimates about future conditions to scientists and policymakers, it is important to ensure that they represent the conditions of the Earth as faithfully as possible. Previous methods mitigated this issue by eliminating models with a high ECS value. "That was a heavy-handed approach," said Massoud. "The models that were thrown out might have good information that we need, especially for understanding the extreme ends of things." "Instead, we adopted a tool called Bayesian Model Averaging, which is a way to combine models with varying influence when estimating their distribution," said Massoud. "We used this to constrain the ECS on these models, which enabled us to project future conditions without the 'hot model problem.'"... This new method provides a framework for how to best understand a collection of climate models. The model weights included in this research informed the Fifth National Climate Assessment, a report released on Nov. 14 that gauges the impacts of climate change in the United States. This project also supports the Earth System Grid Federation, an international collaboration led in the U.S. by DOE that manages and provides access to climate models and observed data…” #GIS #spatial #mapping #climatechange #spatialanalysis #spatiotemporal #model #modeling #numericmodeling #global #statistics #weighting #bayesian #modelaverging #climatesensivity #climatemodels #projection #ECS #earthsystem #ORNL

    • +1

Explore categories