Strategies for Encouraging Team Collaboration on AI Projects

Explore top LinkedIn content from expert professionals.

Summary

Encouraging team collaboration on AI projects involves creating clear strategies and structured processes to ensure that diverse team members effectively work together, leveraging their unique skills to unlock the potential of AI technologies.

  • Build a collaborative foundation: Assemble small, cross-functional teams with a mix of technical experts and subject matter specialists to share knowledge, align goals, and identify project priorities through structured discussions.
  • Enable with practical tools: Provide easy-to-use AI tools and create resources like prompt libraries or real-time support channels to help team members confidently integrate AI into their workflows.
  • Encourage peer learning: Empower team champions to share success stories, lead training sessions, and create knowledge hubs with best practices to build confidence across the team.
Summarized by AI based on LinkedIn member posts
  • View profile for Jonathan M K.

    VP of GTM Strategy & Marketing - Momentum | Founder GTM AI Academy & Cofounder AI Business Network | Business impact > Learning Tools | Proud Dad of Twins

    39,172 followers

    Throwing AI tools at your team without a plan is like giving them a Ferrari without driving lessons. AI only drives impact if your workforce knows how to use it effectively. After: 1-defining objectives 2-assessing readiness 3-piloting use cases with a tiger team Step 4 is about empowering the broader team to leverage AI confidently. Boston Consulting Group (BCG) research and Gilbert’s Behavior Engineering Model show that high-impact AI adoption is 80% about people, 20% about tech. Here’s how to make that happen: 1️⃣ Environmental Supports: Build the Framework for Success -Clear Guidance: Define AI’s role in specific tasks. If a tool like Momentum.io automates data entry, outline how it frees up time for strategic activities. -Accessible Tools: Ensure AI tools are easy to use and well-integrated. For tools like ChatGPT create a prompt library so employees don’t have to start from scratch. -Recognition: Acknowledge team members who make measurable improvements with AI, like reducing response times or boosting engagement. Recognition fuels adoption. 2️⃣ Empower with Tiger Team Champions -Use Tiger/Pilot Team Champions: Leverage your pilot team members as champions who share workflows and real-world results. Their successes give others confidence and practical insights. -Role-Specific Training: Focus on high-impact skills for each role. Sales might use prompts for lead scoring, while support teams focus on customer inquiries. Keep it relevant and simple. -Match Tools to Skill Levels: For non-technical roles, choose tools with low-code interfaces or embedded automation. Keep adoption smooth by aligning with current abilities. 3️⃣ Continuous Feedback and Real-Time Learning -Pilot Insights: Apply findings from the pilot phase to refine processes and address any gaps. Updates based on tiger team feedback benefit the entire workforce. -Knowledge Hub: Create an evolving resource library with top prompts, troubleshooting guides, and FAQs. Let it grow as employees share tips and adjustments. -Peer Learning: Champions from the tiger team can host peer-led sessions to show AI’s real impact, making it more approachable. 4️⃣ Just in Time Enablement -On-Demand Help Channels: Offer immediate support options, like a Slack channel or help desk, to address issues as they arise. -Use AI to enable AI: Create customGPT that are task or job specific to lighten workload or learning brain load. Leverage NotebookLLM. -Troubleshooting Guide: Provide a quick-reference guide for common AI issues, empowering employees to solve small challenges independently. AI’s true power lies in your team’s ability to use it well. Step 4 is about support, practical training, and peer learning led by tiger team champions. By building confidence and competence, you’re creating an AI-enabled workforce ready to drive real impact. Step 5 coming next ;) Ps my next podcast guest, we talk about what happens when AI does a lot of what humans used to do… Stay tuned.

  • View profile for Allie K. Miller
    Allie K. Miller Allie K. Miller is an Influencer

    #1 Most Followed Voice in AI Business (2M) | Former Amazon, IBM | Fortune 500 AI and Startup Advisor, Public Speaker | @alliekmiller on Instagram, X, TikTok | AI-First Course with 200K+ students - Link in Bio

    1,603,648 followers

    Been perfecting this small team AI methodology, and it’s incredibly effective. Get 4-8 people together, at least one technical and at least one subject matter expert, and sprint together with paid AI tools (free tools are fun for experiments, not for business). Start with a multi-hour shareout (with AI recording and transcribing!) of the SME sharing the latest in their field, the work the company is doing, the blockers the company has, what you would share if you were onboarding someone new and wanted them to succeed. Then have the dev/SWE/SA/DS do the same. Be sure to include what tools and resources are available, what is actually used in your company’s stack, what’s working, and what’s not. Then run two deep research queries: one on your specific company, one on AI’s impact on your narrow industry. Then brainstorm how to use AI to transform your business (have AI record and transcribe this too! Otter is easy, but there are others). THEN take both deep research outputs and single-person transcriptions, load it as context. Then prompt the AI to brainstorm potential AI ideas, giving the third transcript as an example. In your prompt… Ask for 200 ideas. Ask AI to score and rank the ideas on criteria you care about (potential revenue? Speed to deploy? People required?). Make sure the top 5 are wide in their support (ie not just 5 ideas to improve calendar management). Ask AI to give a mini execution plan for the top 5. Ask for what you might be missing. Ask for ways to make the ideas 5x better. Ask for revolutionary ways to execute the 5 so that they score higher on your criteria. Try and be in person if possible. It's extra magic. We are seeing cutbacks from cost pressures, uncertain economic conditions, and the hope of AI. I am not (yet?) a proponent for 4-day work weeks, but I am a big proponent of smaller teams. This is one way to get ahead. ♻️ Save and share this post with others who could use an AI edge.

  • View profile for Andreas Sjostrom
    Andreas Sjostrom Andreas Sjostrom is an Influencer

    LinkedIn Top Voice | AI Agents | Robotics I Vice President at Capgemini's Applied Innovation Exchange | Author | Speaker | San Francisco | Palo Alto

    13,551 followers

    Some of the best AI breakthroughs we’ve seen came from small, focused teams working hands-on, with structured inputs and the right prompting. Here’s how we help clients unlock AI value in days, not months: 1. Start with a small, cross-functional team (4–8 people) 1–2 subject matter experts (e.g., supply chain, claims, marketing ops) 1–2 technical leads (e.g., SWE, data scientist, architect) 1 facilitator to guide, capture, and translate ideas Optional: an AI strategist or business sponsor 2. Context before prompting - Capture SME and tech lead deep dives (recorded and transcribed) - Pull in recent internal reports, KPIs, dashboards, and documentation - Enrich with external context using Deep Research tools: Use OpenAI’s Deep Research (ChatGPT Pro) to scan for relevant AI use cases, competitor moves, innovation trends, and regulatory updates. Summarize into structured bullets that can prime your AI. This is context engineering: assembling high-signal input before prompting. 3. Prompt strategically, not just creatively Prompts that work well in this format: - “Based on this context [paste or refer to doc], generate 100 AI use cases tailored to [company/industry/problem].” - “Score each idea by ROI, implementation time, required team size, and impact breadth.” - “Cluster the ideas into strategic themes (e.g., cost savings, customer experience, risk reduction).” - “Give a 5-step execution plan for the top 5. What’s missing from these plans?” - “Now 10x the ambition: what would a moonshot version of each idea look like?” Bonus tip: Prompt like a strategist (not just a user) Start with a scrappy idea, then ask AI to structure it: - “Rewrite the following as a detailed, high-quality prompt with role, inputs, structure, and output format... I want ideas to improve our supplier onboarding process with AI. Prioritize fast wins.” AI returns something like: “You are an enterprise AI strategist. Based on our internal context [insert], generate 50 AI-driven improvements for supplier onboarding. Prioritize for speed to deploy, measurable ROI, and ease of integration. Present as a ranked table with 3-line summaries, scoring by [criteria].” Now tune that prompt; add industry nuances, internal systems, customer data, or constraints. 4. Real examples we’ve seen work: - Logistics: AI predicts port congestion and auto-adjusts shipping routes - Retail: Forecasting model helps merchandisers optimize promo mix by store cluster 5. Use tools built for context-aware prompting - Use Custom GPTs or Claude’s file-upload capability - Store transcripts and research in Notion, Airtable, or similar - Build lightweight RAG pipelines (if technical support is available) - Small teams. Deep context. Structured prompting. Fast outcomes. This layered technique has been tested by some of the best in the field, including a few sharp voices worth following, including Allie K. Miller!

Explore categories