Let’s say your support center is getting hammered with repeat calls about a new product feature. Historically, the team would escalate, create a task force, and maybe update a knowledge base weeks later. With the tech available today, you should be able to unify signals from tickets, chat logs, and social mentions instead. This helps you quickly interpret the root cause. Perhaps in this case it's a confusing update screen that’s triggering the same questions. Instead of just sharing the feedback with the task force that'll take weeks to deliver something, galvanize leaders and use your tech stack to orchestrate a fix in real time. Don't have orchestration in that stack? Start looking into this asap. An orchestration engine canauto-suggest a targeted in-app message for affected users, trigger a proactive email campaign with step-by-step guidance, and update your chatbot’s responses that same day. Reps get nudges on how to resolve the issue faster, and managers can watch repeat contacts drop by a measurable percentage in real time. But the impact isn’t limited to operations. You energize the business by sharing these results in a company-wide standup and spotlighting how different teams contributed to the OUTCOME. Marketing sees reduced churn, operations sees lower cost-to-serve, and leadership sees a team aligned around outcomes instead of activities. If you want your AI investments to move the needle, focus on unified signals, real-time orchestration, and getting the whole business excited about customer outcomes....not just actions. Remember: Outcomes > Actions #customerexperience #ai #cxleaders #outcomesoveraction
How AI Can Help Resolve Customer Issues Faster
Explore top LinkedIn content from expert professionals.
Summary
AI is revolutionizing customer support by enabling businesses to resolve issues faster, improve customer satisfaction, and empower teams through automated yet personalized solutions.
- Unify customer insights: Integrate data from tickets, chat logs, and social channels to identify root causes of issues and address problems in real time.
- Utilize AI-powered tools: Deploy AI agents to handle repetitive queries, draft personalized responses, and escalate complex issues to human agents when needed.
- Focus on proactive solutions: Use AI to send targeted messages, update chatbot responses, and trigger campaigns that guide customers through solutions instantly.
-
-
We built a Zendesk email assist AI agent and it's handling a full quarter’s work for one human support rep. Here's the step-by-step flow: 1. User sends a complex or nuanced product question to support@voiceflow.com 2. Tico (our AI agent) reviews the question and passes the content and intent. 3. The most fitting knowledge base is tapped via confidence level. 4. A personalized, accurate & highly-specific response is drafted. 5. The draft is slotted into Zendesk as a private comment. 6. Our team reviews, tweaks if necessary, and sends it to the user. This has slashed the onboarding and training time for support staff that's typically slowed down by the complexity of the product. The impact? ✅ Our support team is no longer just keeping up; they’re ahead, delivering faster, sharper responses. ✅ Customers feel understood, their issues addressed with pinpoint accuracy, boosting our CSAT scores. ✅ Tico’s continuous learning means every interaction makes it smarter, ready for even the most nuanced queries. So far, Tico Assist is tackling over 2000 tickets - a full quarter’s work for one human support rep, for less than the price of lunch. If you’re navigating high support volumes with a lean team, this type of Zendesk AI Assist Agent can help blend automation with quality for your customers. P.S. Tico doesn’t just fetch any answer. It pulls from the most relevant knowledge base (e.g. a technical code response for a developer question). From my post last week, this multi-knowledge base strategy is something that I think we will see much more of in CX this year.
-
Came back from vacation Monday. Inbox? On fire.🔥 Buried in the chaos: a customer story that stopped me in my tracks (and made me so happy). A Customer Support leader at a fast-growing financial services company used AI to transform his team - in just a few weeks. This leader works for a financial services company that’s in high-growth mode. Great news, right? Yes! For everyone except his Customer Support team… As the business grew faster, they were bombarded with repetitive questions about simple things like loan statuses and document requirements. Reps were overwhelmed. Customers faced longer response times. The company has been a HubSpot customer for nearly 10 years. They turned to Customer Agent, HubSpot’s AI Agent, and got to work: - Connected it to their knowledge base → accurate, fast answers - Set smart handoff rules → AI handles the simple, reps handle the complex - Customized the tone → sounds like them, not a generic bot (you know the type) In a short space of time, things changed dramatically: - Customer Agent now resolves more tickets than any rep - 94.9% of customers report being happy with the experience - For the first time, the team can prioritize complex issues and provide proactive support to high-value customers It’s exciting to see leaders using Customer Agent to not just respond to more tickets, but to increase CSAT and empower their teams to drive more impact. 2025 is the year of AI transformed Customer Support. I am stunned by how quickly that transformation is playing out!